

Neural Approaches to Sequence Labeling for Information Extraction

Neurale netwerkoplossingen voor het labelen van tekstsequenties bij informatie-extractie

Ioannis Bekoulis

Promotoren: prof. dr. ir. C. Develder, dr. ir. T. Demeester
Proefschrift ingediend tot het behalen van de graad van

Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. B. Dhoedt

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2019 - 2020

ISBN 978-94-6355-285-1
NUR 984
Wettelijk depot: D/2019/10.500/93

Ghent University
Faculty of Engineering and Architecture
Department of Information Technology

Neural Approaches to Sequence Labeling for Information Extraction

Examination Board:

prof. C. Develder (advisor)
dr. ir. T. Demeester (advisor)
prof. F. De Turck (chair)
prof. T. Dhaene (secretary)
prof. I. Augenstein
prof. K. Demuynck
prof. V. Hoste
prof. S. Van Hoecke

Dissertation for acquiring the degree of
Doctor of Computer Science Engineering

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisors
Prof. Chris Develder and Dr. Thomas Demeester for their continuous sup-
port, motivation and patience, but mostly for the great opportunity they
gave me back in 2016 to start my postgraduate studies. Besides my main
supervisors, I would also like to thank Johannes Deleu for his insightful
guidance throughout my PhD. Without them and without our (formal and
informal) brainstorming sessions, this thesis would not have been possi-
ble. I owe special thanks to Prof. Michalis Vazirgiannis who supervised
my master thesis at École Polytechnique, in 2015 and motivated me to pur-
sue postgraduate studies.

I would also like to express my gratitude to the members of my PhD
thesis committee, Prof. Filip De Turck, Prof. Tom Dhaene, Prof. Isabelle
Augenstein, Prof. Kris Demuynck, Prof. Veronique Hoste, Prof. Sofie Van
Hoecke for dedicating time and effort to read my thesis and to provide
constructive feedback.

I feel blessed for being part of such an awesome team at Ghent Univer-
sity. I would like to thank all the current and former members of our group
(T2K and beyond) from which I learnt a lot and we also have shared some
amazing moments: Dr. Lucas Sterckx, Laurent Mertens, Dr. Nasrin Sadeg-
hianpourhamami, Dr. Matthias Strobbe, Klim Zaporojets, Fréderic Godin,
Semere Kiros Bitew, Amir Hadifar, Manu Lahariya and Maarten De Raedt.

During the last few years I was so lucky to meet many great people
that supported me every day of my life in Belgium. I would like to thank
Christos, Grigoris, Vasilis M., Anouk, Stavros, Eleni, Foivos, Andreas, Ma-
ria, Dimitris, Vasilis Ch., Anna, Drosos, Konstantina and Takis for this.
Many thanks go to my good friends from Greece, Antonis, Giorgos, Pa-
nos, Panos and Vasilis. Even though we only meet mostly on holidays, our
whole day coffees help us to catch up for the rest of the year. Special menti-
ons goes to Eirini and my cousin Ntinos that were always there motivating
and supporting me.

My deepest respect from the bottom of my heart goes to my family back
in Greece; my parents, Christos, Elli and my brother Giorgos that gave me
an amazing childhood. Thank you for your unconditional love, encoura-
gement and support that made this possible. Last but not least, I would
also like to thank Christina for being in my life. Thanks for supporting me

ii

in every possible way and for the joy that you have brought into my life.

Ghent, Fall 2019
Giannis

Table of Contents

Acknowledgements i

Samenvatting xix

Summary xxiii

1 Introduction 1
1.1 Traditional approaches in NLP 3
1.2 Neural network approaches in NLP 4

1.2.1 Embedding layer . 4
1.2.1.1 Word embeddings 5
1.2.1.2 Deep contextualized word representations . 6
1.2.1.3 Character embeddings 6

1.2.2 RNN . 7
1.2.3 CNN . 7

1.3 Learning in NLP Tasks . 8
1.3.1 Single task learning . 9
1.3.2 Multi-task learning . 9

1.4 NLP tasks . 10
1.4.1 Sequence labeling . 11
1.4.2 Dependency parsing 12
1.4.3 Relation extraction . 14

1.5 Research contributions . 14
1.6 Publications . 17

1.6.1 Publications in international journals
(listed in the Science Citation Index) 17

1.6.2 Publications in international conferences 17
1.6.3 Publications in international conferences (not included

in this thesis) . 18
References . 19

2 Reconstructing the house from the ad: Structured prediction on
real estate classifieds 31
2.1 Introduction . 32
2.2 Related work . 33

iv

2.3 Structured prediction of real estate properties 33
2.3.1 Problem formulation 33
2.3.2 Structured prediction model 34

2.3.2.1 Sequence labeling 35
2.3.2.2 Part-of tree construction 36

2.4 Experimental results . 37
2.4.1 Experimental setup . 37
2.4.2 Entity extraction . 38
2.4.3 Dependency parsing 38
2.4.4 Pipeline approach . 39

2.5 Conclusion . 40
References . 40

3 An attentive neural architecture for joint segmentation and pars-
ing and its application to real estate ads 45
3.1 Introduction . 46
3.2 Related work . 49

3.2.1 Sequence labeling . 49
3.2.2 Dependency parsing 50
3.2.3 Joint learning . 52

3.3 Problem definition . 52
3.4 Methodology . 55

3.4.1 Two-step pipeline . 56
3.4.1.1 Sequence labeling 56
3.4.1.2 Part-of tree construction 57

3.4.2 Joint model . 59
3.4.2.1 Embedding Layer 59
3.4.2.2 Bidirectional LSTM encoding layer 60
3.4.2.3 Joint learning as head selection 61
3.4.2.4 Attention Layer 62
3.4.2.5 Tree construction step: Edmonds’ algorithm 64

3.5 Results and discussion . 64
3.5.1 Experimental setup . 65
3.5.2 Comparison of the pipeline and the joint model . . . 66
3.5.3 Comparison of the joint and the attention model . . . 67
3.5.4 Discussion . 69

3.6 Conclusions . 71
References . 72

4A Joint entity recognition and relation extraction as a multi-head se-
lection problem 83
4A.1 Introduction . 84
4A.2 Related work . 86

4A.2.1 Named entity recognition 87
4A.2.2 Relation extraction . 87

v

4A.2.3 Joint entity and relation extraction 87
4A.3 Joint model . 89

4A.3.1 Embedding layer . 90
4A.3.2 Bidirectional LSTM encoding layer 91
4A.3.3 Named entity recognition 91
4A.3.4 Relation extraction as multi-head selection 93
4A.3.5 Edmonds’ algorithm 94

4A.4 Experimental setup . 94
4A.4.1 Datasets and evaluation metrics 94
4A.4.2 Word embeddings . 96
4A.4.3 Hyperparameters and implementation details 96

4A.5 Results and discussion . 97
4A.5.1 Results . 97
4A.5.2 Analysis of feature contribution 101

4A.6 Conclusion . 101
References . 107

4B Adversarial training for multi-context joint entity and relation ex-
traction 115
4B.1 Introduction . 116
4B.2 Related work . 117
4B.3 Model . 118

4B.3.1 Joint learning as head selection 118
4B.3.2 Adversarial training (AT) 119

4B.4 Experimental setup . 120
4B.5 Results . 122
4B.6 Conclusion . 123
References . 124

5 Sub-event detection from Twitter streams as a sequence labeling
problem 129
5.1 Introduction . 130
5.2 Related work . 131
5.3 Model . 132

5.3.1 Task definition . 132
5.3.2 Word- vs tweet-level representations 132
5.3.3 Binary classification baseline 132
5.3.4 Sequence labeling approach 133

5.4 Experimental setup . 133
5.5 Results . 134

5.5.1 Baseline results . 134
5.5.2 Sequence labeling results 135

5.6 Conclusion . 137
References . 137

vi

6 Conclusions and Future Research Directions 141
6.1 Conclusions . 141

6.1.1 Baseline methods for the real estate structured pre-
diction problem . 141

6.1.2 Neural joint model for the real estate structured pre-
diction problem . 142

6.1.3 General purpose neural joint model for NER and re-
lation extraction . 142

6.1.4 Sub-event detection from Twitter streams as a sequence
labeling problem . 143

6.2 Future Directions . 143
References . 146

List of Figures

1.1 Left: Gender relations between 3 pairs of words in the vec-
tor space. Right: Singular/plural relations between 2 words.
(Figure source [38]) . 5

1.2 Embedding layer in detail. The characters of the word “Man”
are represented by character vectors (i.e., embeddings) that
are learned during training. The character embeddings are
fed to a bidirectional LSTM (see Section 1.2.2) and the two
final states (forward and backward) are concatenated. The
vectors “Character embeddings” is the character-level repre-
sentation of the word. This vector is then further concate-
nated to the word-level representation “Word embeddings”
to obtain the complete word embedding vector. 6

1.3 A typical RNN with a loop and the unrolled version. (Fig-
ure source [43]) . 7

1.4 CNN layer for binary text classification. The filters, the con-
volutions, the result of the max-pooling and the softmax are
depicted. (Figure source [47]) 8

1.5 The task of NER and relation extraction in a pipeline fash-
ion. The output of the first module (i.e., the predicted en-
tities) are the input for the second module (i.e., the relation
extractor). 9

1.6 The joint many-task model proposed in [56] for POS tag-
ging, chunking, dependency parsing, semantic relatedness,
and textual entailment. (Figure source [56]) 10

1.7 Example of a sentence using the BIO encoding scheme for
the task of NER. For instance, the B-ORG and I-ORG tags
indicate the beginning and the inside tokens of the entity
“Disease Control Center”, respectively. 11

1.8 An example sentence with its corresponding dependency
parse tree. (Figure source [72]) 12

1.9 An example sentence for relation extraction where the two
entities are colored in green and blue, respectively and the
type of the relation between them is colored in red. 14

viii

2.1 Sample unstructured ad and corresponding structured rep-
resentation as a property tree. 35

2.2 The full structured prediction pipeline. 35

3.1 Fictitious sample unstructured ad and corresponding struc-
tured representation as a property tree. Indentation indi-
cates the part-of relations across the entities. For instance,
the “apartment” is part-of the property while the “living
room” is part-of the “apartment”. On the left side (i.e., be-
fore the vertical bar), we denote the name of the concept for
each part of the house (e.g., apartment) while on the right
side (i.e., after the vertical bar), we mention the way that
each concept literally exists in the text (e.g., large apart-
ment, home). Note that the additional “ROOT” node on
top of the tree has not been included to keep the example
simpler. 54

3.2 An example graph of projective part-of dependencies. . . . 55

3.3 Graph representing the part-of dependencies of Fig. 3.1. The
dashed arcs are representing the non-projective dependen-
cies. 55

3.4 The full structured prediction system setup. 56

3.5 The architecture of the joint model. 59

4A.1 The multi-head selection model for joint entity and relation
extraction. The input of our model is the words of the sen-
tence which are then represented as word vectors (i.e., em-
beddings). The BiLSTM layer extracts a left+right context
aware representation for each word. Then the CRF and the
sigmoid layers are able to produce the outputs for the two
tasks. The outputs for each token (e.g., Smith) are: (i) an
entity recognition label (e.g., I-PER) and (ii) a set of tuples
comprising the head tokens of the entity and the types of
relations between them (e.g., {(Center, Works for), (Atlanta,
Lives in)}). The outputs of each subtask (i.e., NER and rela-
tion extraction) are depicted in red and blue, respectively. . 88

4A.2 Embedding layer in detail. The characters of the word “Man”
are represented by character vectors (i.e., embeddings) that
are learned during training. The character embeddings are
fed to a BiLSTM and the two final states (forward and back-
ward) are concatenated. The vector wchars is the character-
level representation of the word. This vector is then further
concatenated to the word-level representation wword2vec to
obtain the complete word embedding vector. 90

ix

4B.1 Our model for joint entity and relation extraction with ad-
versarial training (AT) comprises (i) a word and charac-
ter embedding layer, (ii) a BiLSTM layer, (iii) a CRF layer
and (iv) a relation extraction layer. In AT, we compute the
worst-case perturbations η of the input embeddings. 117

4B.2 F1 performance of the baseline and the AT models on the
validation sets from 10-30 epochs onwards depending on
the dataset. The smoothed lines (obtained by LOWESS smooth-
ing) model the trends and the 95% confidence intervals. . . 121

5.1 Our sub-event detection model comprises: (a) a bin layer,
(b) a unit layer, (c) a word embeddings layer, (d) a represen-
tation layer and (e) a chronological LSTM layer to model
the natural flow of the sub-events within the event. We rep-
resent each bin using either (i) a tweet- or (ii) a word-level
representation. The AVG∗ represents an average pool op-
eration, performed either directly on the embeddings or on
the tweet’s LSTM representation. 131

5.2 Bin-level F1 performance of the three best performing mod-
els on the validation set with respect to the number of epochs.
The smoothed lines (obtained by LOWESS smoothing) model
the trends and the 95% confidence intervals. 136

List of Tables

1.1 Overview of contributions presented in this thesis. 15

2.1 Real estate entity types. 34

2.2 Performance of the real estate entity recognition with hy-
perparameter λCRF = 10. 38

2.3 Performance of the three approaches on the structured pre-
diction task. The top half are results for known entities
(i.e., the gold standard as annotated), while the bottom half
starts from the entities as found in Step (1) of our end-to-
end pipeline (λCRF = 10 and C = 1). 39

3.1 Real estate entity types. 53

3.2 Performance of the three approaches on the structured pre-
diction task. The top rows are for the pipeline approach,
i.e., hand-crafted features. The next block of results presents
the results for the neural joint model based on LSTMs. The
bottom block contains results of the joint models augmented
with several attentive architectures. Edmonds’ algorithm is
applied in all of the models to retain the tree structure, ex-
cept for the LSTM joint model. The LSTM+E is the LSTM
model with Edmonds’ algorithm included. The 2xLSTM+E
is the same joint model but it simply uses a stack of two
LSTM layers. In the experiments with attention, we use a
one-stack LSTM. The rightmost column is the percentage
of the ads that are valid trees before applying Edmonds’
(i.e., Step (3) of Fig. 3.4), showing the ability of the model
to form trees during greedy inference. In the Edgei models,
the number i stands for the number of times that we have
run the message passing phase. 68

xii

4A.1 Comparison of our method (multi-head) with the state-of-
the-art on the ACE04, CoNLL04, DREC and ADE datasets.
The models: (i) multi-head+E (the model + the Edmond
algorithm to produce a tree-structured output), (ii) single-
head (the model predicts only one head per token) and (iii) multi-
head EC (the model predicts only the entity classes assum-
ing that the boundaries are given) are slight variations of
the multi-head model adapted for each dataset and evalua-
tion. The 3and 7 symbols indicate whether or not the mod-
els rely on any hand-crafted features or additional tools.
Note that all the variations of our models do not rely on
any additional features. We include here different evalua-
tion types (strict, relaxed and boundaries) to be able to com-
pare our results against previous studies. Finally, we re-
port results in terms of Precision, Recall, F1 for the two
subtasks as well as overall F1, averaging over both sub-
tasks. Bold entries indicate the best result among mod-
els that only consider automatically learned features. Note
that we also compute confidence intervals for each dataset
based on simple binomial distributions for the proposed
models. 99

4A.2 Ablation tests on the ACE04 test dataset. 101
4A.3 Comparison of the multi-head selection model (only the

NER component) against the NER baseline of [19]. Bold
font indicates the best results for each dataset. 104

4A.4 Model performance for different embedding dropout val-
ues. Bold entries indicate the result reported in Section 4A.5. 104

4A.5 Model performance for different LSTM layer dropout val-
ues. Bold entries indicate the result reported in Section 4A.5. 105

4A.6 Model performance for different LSTM output dropout val-
ues. Bold entries indicate the best result reported in Sec-
tion 4A.5. 105

4A.7 Model performance for different LSTM size values. Bold
entries indicate the result reported in Section 4A.5. 106

4A.8 Model performance for different character embeddings size
values. Bold entries indicate the result reported in Sec-
tion 4A.5. 106

4A.9 Model performance for different label embeddings size val-
ues. Bold entries indicate the result reported in Section 4A.5. 106

4A.10 Model performance for different layer widths l of the neural
network (both for the entity and the relation scoring layers).
Bold entries indicate the result reported in Section 4A.5. . . 107

4A.11 Model performance for different embeddings on the ACE04
dataset. Bold entries indicate the result reported in Sec-
tion 4A.5. 107

xiii

4B.1 Comparison of our method with the state-of-the-art in terms
of F1 score. The proposed models are: (i) baseline, (ii) base-
line EC (predicts only entity classes) and (iii) baseline (EC)
+ AT (regularized by AT). The 3and 7 symbols indicate
whether the models rely on external NLP tools. We include
different evaluation types (S, R and B). Note that confidence
intervals for each dataset are reported in Fig. 4B.2. 121

5.1 Comparing our neural network binary classification base-
line model to state-of-the-art (P = precision, R = recall). . . . 134

5.2 Comparison of our baseline methods in terms of micro bin-
level and relaxed F1 score with and without chronological
LSTM (see Fig. 5.1). The 3and 7 indicate whether the model
uses a tweet-level LSTM (TL). 135

List of Acronyms

ADE Adverse Drug Events

AI Artificial Intelligence

AT Adversarial Training

AVG Average

BiLSTM Bidirectional LSTM

BIO Beginning, Inside, Outside

CBOW Continuous Bag-of-Words

CRF Conditional Random Fields

CNN Convolutional Neural Network

DREC Dutch Real Estate Classifieds

EC Entity Classification

HMM Hidden Markov Model

LSTM Long Short-Term Memory network

LTM Locally Trained Model

MTT Matrix-Tree Theorem

MLP Multilayer Perceptron

NER Named Entity Recognition

NLP Natural Language Processing

ORG Organization

PER Person

POS Part-of-Speech

RE Relation Extraction

xvi

RNN Recurrent Neural Network

SVM Support Vector Machine

TL Tweet-level LSTM

Samenvatting
– Summary in Dutch –

Artificiële intelligentie (AI) bracht een revolutie teweeg in verschillende
aspecten van ons dagelijks leven, met toepassingen zoals spraakherken-
ning, automatische vertaling, beeldherkenning, zelfrijdende auto’s.Voor
sommige complexe taken, zoals het bordspel Go en het strategiespel Star-
Craft, overtroffen deze AI-systemen zelfs mensen. Het algemene doel van
AI is om algoritmen en methoden te ontwikkelen waarmee machines ta-
ken uitvoeren die onze intelligentie imiteren. Dit omvat redeneren, leren,
onthouden, problemen oplossen, etc. Er werden reeds vele methoden voor-
gesteld om deze intelligentie machines aan te leren. Ze kunnen worden ge-
groepeerd in statistische methoden, machinaal leren en optimalisatie pro-
blemen.

Een groot aantal toepassingen van AI richt zich op technieken om de
menselijke taal te leren begrijpen. Tekstuele informatie is zeer nuttig voor
veel toepassingen, maar heeft een zeer ongestructureerde vorm en de be-
tekenis ervan is vaak dubbelzinnig en afhankelijk van de context. In dit
proefschrift bestuderen we een reeks taken uit het domein van natuurlijke
taalverwerking (in het Engels: natural language processing, NLP) vanuit een
theoretische aanpak en gebruiken computationele technieken voor de au-
tomatische analyse en representatie van taal. NLP richt zich op een groot
aantal taken waaronder automatisch samenvatten, classificatie van docu-
menten, automatische vertaling, beantwoording van vragen, . . . Eerder on-
derzochte benaderingen gebruiken machinaal leren, heuristische benade-
ringen en onlangs diepe neurale netwerken.

Het thema van mijn proefschrift is het verrijken van ongestructureerde
tekst met gestructureerde informatie. Dit omvat de automatische extractie van
entiteiten (bijvoorbeeld namen van mensen of organisaties, of soorten ka-
mers in een huis) en relaties tussen deze entiteiten. Deze taken, ook wel
named entity recognition en relationship extraction genoemd, zijn belangrijke
NLP-taken en werden reeds vaak bestudeerd in eerder werk. Desalniet-
temin lieten tekortkomingen van die bestaande methoden nog voldoende
ruimte voor verdere fundamentele onderzoeksstappen. Vooral via het ge-
bruik van grote hoeveelheden data en nieuwe modellen zoals diepe neu-
rale netwerken, welke de voorbije jaren een grote impact hebben gehad op

xx SAMENVATTING

AI en NLP. Mijn onderzoek startte vanuit het stellen van volgende vraag:
kan men schematisch een huis reconstrueren, i.e., voorspellen hoeveel kamers een
huis heeft, waar deze zich bevinden, etc. louter gebaseerd op een tekstuele beschrij-
ving ervan? Dit onderzoek was het resultaat van een samenwerking met
immowebsite Realo en gaf aanleiding tot verschillende fundamentele on-
derzoekpistes, welke hebben geresulteerd in dit proefschrift. Na het verge-
lijken van klassieke methodes van machinaal leren (Hoofdstuk 2) en diepe
neurale netwerken voor verrijking van tekst, heb ik me gericht op het ver-
der ontwikkelen van diepe neurale netwerken (Hoofdstuk 3). Het toepas-
singsgebied van mijn onderzoek ontwikkelde zich daarna ook verder voor
andere domeinen (Hoofdstukken 4A - 4B), en het extraheren van gebeur-
tenissen uit sociale media tekst (Hoofdstuk 5).

De hoofdstukken, samen met de belangrijkste bijdragen, in chronologi-
sche volgorde van mijn thesis zijn als volgt:

In Hoofdstuk 1 geven we een kort overzicht van de bestaande literatuur
en introduceren we de technieken en applicaties om de lezer in staat te
stellen de termen te begrijpen die in de volgende hoofdstukken worden
beschreven.

In Hoofdstuk 2 definiëren we de eerder vermelde taak van structureren
van tekst over vastgoed: de generatie van een gestructureerde weergave
van het vastgoed, verder ook wel de property tree genoemd, enkel geba-
seerd op de beschrijving in natuurlijke taal van het onroerend goed. Speci-
fieker; (i) we beschrijven het verzamelen en annoteren van een grote hoe-
veelheid tekst voor de taak van informatie extractie, (ii) we introduceren
drie methoden voor het implementeren van de toepassing, en (iii) we voe-
ren een vergelijkende studie uit van de voorgestelde oplossingen op een
nieuwe, geannoteerde dataset. We verdelen het probleem van het trans-
formeren van tekst naar een hiërarchische structuur in drie eenvoudigere
subtaken, namelijk (1) herkenning van entiteiten in de tekst (waaronder
vloeren, kamers, gedeelten binnen kamers, etc.), (2) dependency parsing om
relaties tussen de betrokken entiteiten te voorspellen, en (3) constructie van
de property tree.

In Hoofdstuk 3 presenteren we een nieuw neuraal netwerkmodel dat
gezamenlijk de twee kern-subtaken (named entity recognition en dependency
parsing, zoals eerder besproken in Hoofdstuk 2) uitvoert voor de vastgoed-
tekst. Het doel van ons model is om de verschillende tekortkomingen
van de traditionele pijplijnmethoden, gepresenteerd in Hoofdstuk 2, aan
te pakken, zoals (i) propagatie van fouten, en (ii) onbenutte interacties tus-
sen de subtaken. Tenslotte vergelijken we uitgebreid de prestaties van de
pijplijnmethoden met het voorgestelde gezamenlijke model en rapporteren
we een grote verbetering van de nieuw geïntroduceerde methode.

In Hoofdstuk 4A introduceren we een nieuw neuraal netwerkmodel
dat (i) de twee taken van named entity recognition en relatie-extractie ge-
lijktijdig uitvoert, en (ii) de complexiteit van het model gepresenteerd in

SUMMARY IN DUTCH xxi

Hoofdstuk 3 reduceert. Ons model toont een verbeterde prestatie ten op-
zichte van de nieuwste state-of-the-art methoden voor een aantal verschil-
lende domeinen (i.e., nieuws, biomedisch, onroerend goed) en talen (i.e.,
Engels, Nederlands) zonder het gebruik van handmatig ontworpen featu-
res of extra NLP-hulpmiddelen. In Hoofdstuk 4B leggen we uit hoe ad-
verserial training kan worden toegepast op het gezamenlijke model (zoals
beschreven in Hoofdstuk 4A) om de performantie van de named entity re-
cognition en relatie-extractie verder te verbeteren. De belangrijkste bijdrage
van dit hoofdstuk is het gebruik van adverserial training als een uitbrei-
ding van de optimalisatie van de gezamenlijke extractietaak.

In tegenstelling tot eerdere hoofdstukken die zich concentreerden op
de taak van named entity recognition en relatie-extractie, bespreekt Hoofd-
stuk 5 verbeterde methoden voor de detectie van gebeurtenissen in tekst
op sociale media. We bestuderen deze taak als het labelen van sequen-
ties (vergelijkbaar met named entity recognition). Ons onderzoek lost veel
van de problemen die in eerdere studies werden geïdentificeerd, op. Meer
concreet, ons model (i) brengt de sequentiële aard van tweets in rekening
en (ii) gebruikt informatie uit eerdere tweets voor het voorspellen van het
type van een gebeurtenis. We voeren ook hier een uitgebreide experimen-
tele studie uit, die het voordeel van sequentie-modellering voor gebeurte-
nisdetectie in sport-Twitter-streams aantoont.

Tot slot, in Hoofdstuk 6, vatten we de bijdragen van het proefschrift
samen en beschrijven we mogelijk pistes voor toekomstig onderzoek.

Summary

Artificial intelligence (AI) has revolutionized several aspects of our daily
lives, with applications in speech recognition, machine translation, image
recognition, autonomously driving cars, etc. It has even outperformed
humans in complex tasks, such as the board game Go and the StarCraft
strategy game. The general goal of AI is to develop algorithms and meth-
ods that make machines perform tasks imitating human intelligence. Hu-
man intelligence demonstrates specific characteristics such as reasoning,
learning, memorization, problem solving, etc. Several methods have been
proposed to tackle various AI tasks. These can be grouped into statistical
methods, machine learning algorithms, and optimization approaches.

A large number of applications in AI focus on tasks that involve the un-
derstanding of human language. This is due to the fact that textual infor-
mation is highly useful for many applications but it has a highly unstruc-
tured form and its meaning is often ambiguous and context-dependent.
In this thesis, we study tasks from the Natural Language Processing (NLP)
field (a sub-field of AI) which includes a theory-motivated range of compu-
tational techniques for the automatic analysis and representation of human
language. NLP focuses on language comprehension in a number of tasks
that include (but are not limited) to text summarization, document clas-
sification, machine translation, question answering, etc. The approaches
proposed in literature include classical machine learning methods, heuris-
tic approaches and neural network architectures.

The overall theme of my dissertation is in enriching sequences of text, in
particular with indications of pre-defined entities (for example, names of
people or organizations, or types of rooms in a house) and relations be-
tween these. These tasks, called named entity recognition and relation extrac-
tion, are core NLP tasks, and they have seen a lot of research in the past.
However, a number of issues with existing methods left several opportuni-
ties for fundamental further research steps. Emerging techniques in deep
neural networks have made that possible over the past few years. My story
starts off with finding the best possible solution to the following research
problem: can we schematically reconstruct a house, in terms of which rooms it
contains, or where these are located, merely based on a textual description? This
research question actually originates from a collaborative project with the
Flemish company Realo. However, it opened up several interesting re-

xxiv SUMMARY

search directions, which have resulted in the underlying dissertation. Af-
ter comparing classical machine learning approaches (Chapter 2) and deep
neural networks for the real-estate task, I focused on further developing
the latter technology (Chapter 3). The application area of my research then
opened up towards several other application domains (Chapters 4A-4B),
and an extension of the entity detection task towards streaming social me-
dia data (Chapter 5).

The individual chapters follow the chronological evolution in my re-
search. Here’s a short overview, with the main contributions.

In Chapter 1, we provide a brief overview of the previous literature
and we focus on techniques and tasks in order to allow the reader to un-
derstand terms described in subsequent chapters.

In Chapter 2, we define the aforementioned real-estate task: the predic-
tion of a tree structured representation of a real-estate property, namely the
property tree, based only on the natural language description of the prop-
erty. Specifically, we (i) collect and annotate a large amount of data for the
structured prediction problem, (ii) introduce three alternative methods for
solving the newly defined problem, and (iii) perform a comparative study
of the proposed solutions on a newly created and annotated real-world
data set. We break down the problem of transforming flat text to hierarchi-
cal structures into three simpler subtasks, namely (1) entity recognition of
real estate entities (where entities are floors, rooms, sub-spaces in rooms,
etc.), (2) dependency parsing to predict the part-of relationships between
the involved entities, and (3) construction of the property tree.

In Chapter 3 we present a new neural network model that jointly per-
forms the two core subtasks (entity recognition and dependency parsing
presented in Chapter 2) for the real-estate problem. The contribution of
our joint model is to address several shortcomings of the pipeline methods
presented in Chapter 2, such as (i) error propagation, and (ii) unexploited
interactions between the subtasks. Finally, we extensively compare the per-
formance of the pipeline methods with the proposed joint model, reporting
a large improvement of the newly introduced method for our application.

In Chapter 4A, we introduce a new general purpose neural network
model that (i) performs the two tasks of entity recognition and relation ex-
traction simultaneously, and (ii) reduces the quadratic complexity of the
sequence labeling model presented in Chapter 3. Our model showcases an
improved performance over previous state-of-the-art methods in a num-
ber of different contexts (i.e., news, biomedical, real estate) and languages
(i.e., English, Dutch) without the use of manually engineered features nor
additional NLP tools. In Chapter 4B, we explain how adversarial training
(AT) can be applied on top of our joint model (as described in Chapter 4A)
to improve the performance of the named entity recognition (NER) and re-
lation extraction tasks. The core contribution of this chapter is the use of
AT as an extension in the training procedure for the joint extraction task.

SUMMARY xxv

Unlike previous chapters that focused on the task of entity recognition
and relation extraction, Chapter 5 presents improved methods for the sub-
event detection task in social media streams, which we frame as a sequence
labeling problem (similar to named entity recognition). Our work over-
comes limitations identified in previous studies. Specifically, our model is
able to (i) take into account the chronological order of consecutive tweets,
and to (ii) exploit information from previous tweets for predicting the pres-
ence and the type of a sub-event. We also perform an extensive experimen-
tal study, indicating the benefit of sequence labeling for sub-event detec-
tion in sports Twitter streams.

Finally, in Chapter 6, we summarize the contributions of the thesis and
describe future research directions.

1
Introduction

“The essence of things lies in simplicity and
we usually perceive it almost always slowly,
absorbed in our complexity."

— Giannis Ritsos

Artificial intelligence (AI) has been applied recently in various appli-
cation domains. Specifically, in our daily lives one can recognize sev-
eral applications which involve the use of AI such as targeted advertise-
ment [1], movie/friend recommendation [2], chatbots [3], speech recogni-
tion [4], self-driving cars [5], weather forecasting [6], etc. AI systems usu-
ally demonstrate behaviors that are related to “human intelligence” (i.e.,
reasoning, learning, memorization, problem solving). This type of “in-
telligence” commonly results from data-driven approaches that are based
on statistical methods, machine learning algorithms and optimization ap-
proaches.

Machine learning is a sub-field of AI that involves methods which learn
directly from the data. Specifically, based on the well-known quote defined
in Mitchell (1997) [7], a learning algorithm can be described as follows:
“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.” However, the
type of task T, experience E, and performance measure P varies for each

2 CHAPTER 1

application. Thus, the question is which are the appropriate T, E and P for
each application domain.

In computer vision applications, such as image recognition, a task T is
the classification of an image into a set of pre-defined categories, the expe-
rience E is a set of human-annotated images and the performance measure
P can be the ratio of the correctly classified images out of total number of
images. In Natural Language Processing (NLP) applications, such as in
Named Entity Recognition (NER) where the goal is to identify the core en-
tities of a given sentence, the task T is the application itself, the experience
E is the set of human-labeled entities in the sentences and P is the per-
formance measure, e.g., the percentage of the correctly identified entities
inside the sentences.

In this thesis, we focus on tasks from the NLP area. NLP lies in the
intersection of machine learning and computational linguistics (i.e., mod-
eling of natural language). It is a theory-motivated range of computational
techniques for the automatic analysis and representation of human lan-
guage [8]. NLP enables computers to process unstructured text and ex-
tract useful (e.g., structured) information. Recent advances in the NLP
area strive towards human-level understanding of language by achieving
high performance in tasks such as text summarization [9], question an-
swering [10], machine translation [11], etc.

The starting point of this thesis is a particular application aiming at
structuring the natural language description (i.e., advertisement) of a real
estate property into a tree-format (described in detail in Chapters 2 and 3).
Specifically, the goal of this application is (i) the detection of the core parts
of the property (e.g., rooms, floors), (ii) identification of the relations be-
tween them (e.g., which room is part-of a floor), and (iii) creation of a tree
structure using the information extracted in (i) and (ii). To tackle this prob-
lem, we break down the tasks into a series of two sub-tasks, namely named
entity recognition (i.e., identify the core entities of a sentence) and relation
extraction (i.e., identify relations between pairs of entities). Our first so-
lution (see Chapter 2) consists of a two-step pipeline method while after-
wards we propose a joint model (see Chapter 3) that overcomes the limita-
tions of the pipeline methods. Then, we realize that our proposed method-
ology is widely applicable and achieves state-of-the-art performance in
various settings and languages. Thus, we improved the method presented
in Chapter 3 in terms of complexity and robustness (see Chapters 4A and
4B). Finally, we applied the same techniques on sequences of micro-posts
instead of applying them on word sequences (see Chapter 5).

In this chapter, we describe (i) the various modeling approaches used in
NLP applications, (ii) learning approaches in the context of the NLP area,

INTRODUCTION 3

and (iii) NLP tasks presented in the context of this thesis. Specifically, we
provide a brief overview with references to previous literature rather than
lengthy or detailed descriptions. This way, we aim to focus on techniques
and tasks in order to allow the reader to understand terms described in
subsequent chapters. This chapter contains six sections:

• In Section 1.1, we outline traditional approaches where hand-crafted
features or external NLP tools are used.

• In Section 1.2, we introduce neural network methods and we describe
various architectures and components frequently used for NLP.

• In Section 1.3, we discuss several learning methods that are com-
monly applied in the NLP area.

• In Section 1.4, we define a set of NLP tasks and we describe in more
detail the tasks studied in this thesis.

• In Section 1.5, we summarize the contributions of this thesis.

• Finally, in Section 1.6, we list the publications presented in this thesis.

1.1 Traditional approaches in NLP

For a long time, feature-based methods or hand-crafted features were used
in the NLP community. Specifically, in tasks such as text categorization [12],
keyword extraction [13, 14], etc., features that look into the counts of words
(see bag-of-words) or a relative importance score of the words inside the
documents (see tf-idf) have been widely used. Alternative representa-
tions such as graph-based textual structures have also been introduced
for information retrieval [15], keyword extraction [16] and text categoriza-
tion [17, 18]. For the sequence labeling task, where the goal is to assign cat-
egorical labels to each word in a sentence, a number of different methods
have been proposed (e.g., Hidden Markov Models (HMM) [19] and Con-
ditional Random Fields (CRF) [20]). However, all of these methods heavily
rely on hand-crafted features. Such hand-crafted features may include the
distance between two examined terms in a document, the concatenation
of the examined term with the (e.g., two, three) nearest tokens and so on.
As another example, for the task of dependency parsing, where the goal is
to analyze the grammatical structure of the sentence, again feature-based
methods have been proposed. The main limitations of the aforementioned
hand-engineered features are:

4 CHAPTER 1

• The feature extraction procedure is time consuming and also depends
on the application scenario (e.g., biology [21], social media context [22]),
language (e.g., Dutch) [23] and the prior knowledge about each ap-
plication (e.g., take specific characteristics for each language into ac-
count),

• Using high-dimensional features for representing textual documents
leads to sparse representations and thus problems such as the curse
of dimensionality might arise (i.e., we have too many features and
too few examples),

• Using high-dimensional representations also leads to increased algo-
rithm complexity.

1.2 Neural network approaches in NLP

Recently, deep learning with neural networks has been successfully ap-
plied to various NLP tasks ranging from NER [24, 25] and text catego-
rization [26–28] to machine translation [29] and question answering [10].
Unlike feature-based methods that use sparse high-dimensional features,
neural network architectures strongly rely on dense vector representations
such as word embeddings (see word2vec [30], Glove [31]) to represent tex-
tual information. Depending on the task at hand (e.g., NER) various neural
network approaches have been proposed. Specifically, Long Short-Term
Memory (LSTM) networks [32], Convolutional Neural Networks (CNN) [33]
and Transformers [34] have been exploited to extract useful high-level dense
feature representations on top of the word embeddings layer. Results indi-
cate that neural methods outperform hand-crafted representations in vari-
ous settings and scenarios (e.g., machine translation [29], question answer-
ing [10]).

1.2.1 Embedding layer

As described in Section 1.1, natural language processing systems tradition-
ally handle words as symbols, thus a word, such as the word “car”, is
treated as a specific word id, e.g., “id 10”. This representation of words
is not informative since relationships between similar terms are not taken
into account. Specifically, the traditional bag-of-words and tf-idf represen-
tations fail to capture semantics between similar terms such as “car” and
“bike”. For instance, both of them are vehicles, have wheels, etc. More-
over, such sparse representations lead to the curse of dimensionality as de-
scribed above (see Section 1.1). To alleviate this, models that produce word

INTRODUCTION 5

Figure 1.1: Left: Gender relations between 3 pairs of words in the vector space.
Right: Singular/plural relations between 2 words. (Figure source [38])

representations (i.e., word embeddings), where semantically similar terms
(i.e., words) are close to each other in a continuous vector space, have been
proposed. An example of this type of vector representation for words (by
projecting them to two dimensions) and the relationship between them is
illustrated in Fig. 1.1. Word embeddings are commonly used as the first
layer for many neural network models that achieve state-of-the-art per-
formance in several NLP tasks (e.g., NER [24, 25, 35], dependency pars-
ing [36, 37]).

1.2.1.1 Word embeddings

Mikolov et al. [30] proposed the word2vec toolkit, which is a learning
model for word embeddings from raw text. Specifically, two types of mod-
els have been proposed: (i) the Continuous Bag-of-Words model (CBOW)
and (ii) the Skip-Gram model. The CBOW model estimates the conditional
probability of a particular word given the surrounding words within a
specified window size. On the contrary, the Skip-Gram model predicts the
surrounding words given the target word. Another well-known model for
word embeddings is Glove, as proposed by Pennington et al. [31]. This
is a “count-based” model since it is based on the computation of a co-
occurrence matrix. In Chapter 3 where we train our own embeddings, we
exploit the Skip-Gram model due to its capability to work well even on
small collections and for rare words. In every other experiment presented
in this thesis, we use pre-trained word embeddings as defined in previous
works.

6 CHAPTER 1

Figure 1.2: Embedding layer in detail. The characters of the word “Man” are rep-
resented by character vectors (i.e., embeddings) that are learned dur-
ing training. The character embeddings are fed to a bidirectional LSTM
(see Section 1.2.2) and the two final states (forward and backward) are
concatenated. The vectors “Character embeddings” is the character-level
representation of the word. This vector is then further concatenated to
the word-level representation “Word embeddings” to obtain the complete
word embedding vector.

1.2.1.2 Deep contextualized word representations

Words might have different meanings in various contexts. Thus, recently
deep neural network architectures have been proposed to obtain word rep-
resentations based on the context of the neighboring terms. This idea has
been exploited either using LSTMs (see Section 1.2.2) or Transformers [34]
in the ELMo [39], OpenAI-GPT [40, 41] and BERT [42] models. These
word representations rely on deep neural network architectures that are
pre-trained on the task of language modeling (i.e., increasing the model
complexity/run-time compared to word embedding vectors). This way,
they are able to obtain different word representations for each word and
thus to model polysemous terms (e.g., the word “cell” can have several
meanings based on the neighboring context) and improve the state-of-the-
art on several NLP tasks.

1.2.1.3 Character embeddings

In addition to word embeddings, character embeddings are also commonly
applied to NLP tasks (see neural NER [24, 25]). This type of embeddings
is able to capture morphological features such as prefixes and suffixes. For
instance, in the biological datasets for NER, the suffix “toxicity” can spec-
ify an adverse drug event entity such as “neurotoxicity” or “hepatotoxicity”

INTRODUCTION 7

Figure 1.3: A typical RNN with a loop and the unrolled version. (Figure
source [43])

and thus it is very informative. Another example might be the Dutch suf-
fix “kamer” (“room” in English) in a real estate dataset which is used to
specify entities of the type space, e.g., “badkamer” (“bathroom” in English)
and “slaapkamer” (“bedroom” in English). Character-level embeddings
are learned during the training phase [24, 25]. An example of a character
embeddings layer is illustrated in Fig. 1.2. In this thesis, we experimentally
show that character embeddings at the input layer are indeed beneficial for
our neural architectures due to the aforementioned reasons.

1.2.2 RNN

Textual input is sequential and thus it is necessary to have neural network
models that are able to capture sequential information. To this end, Recur-
rent Neural Networks (RNN) [44] have been proposed to model sequential
data and allow information to flow from previous cells of the network (as-
suming that each word in the sequence is the input for each cell). Each
cell of the RNN layer receives a token as input and produces an output.
An example of an RNN layer is illustrated in Fig. 1.3. Although RNNs
are good in capturing information present in previous timesteps, when the
informative context is further back in the past, RNNs fail to well-capture
this information (i.e., they remember only recent information). Since plain
RNNs are not successful in capturing long-term dependencies [45, 46], a
more advanced kind of RNNs has been proposed to overcome this issue:
Long Short-term Memory (LSTM) cells have been successfully applied in
several tasks to capture long-term dependencies. In this thesis, we mostly
used LSTMs since we experiment with long documents.

1.2.3 CNN

As discussed in the introductory paragraph of Section 1.2, on top of the
embeddings, we are interested to obtain high-level feature representations

8 CHAPTER 1

Figure 1.4: CNN layer for binary text classification. The filters, the convolutions,
the result of the max-pooling and the softmax are depicted. (Figure
source [47])

in various NLP tasks (see NER [35], text classification [26], summariza-
tion [9]). CNNs have been extensively used for this purpose in computer
vision [48] and thus NLP researchers adopted CNNs to extract n-gram fea-
tures. CNNs in NLP tasks are typically applied over the word embeddings
layer. Specifically, a number of convolutional filters of different sizes are
applied over the input layer. This phase is usually followed by a max-
pooling operator. An example of a CNN layer for binary text classification
is illustrated in Fig. 1.4. CNNs are not able to capture sequential infor-
mation as opposed to LSTMs. The CNN filters are of fixed size and thus
CNNs are able to capture only local information making them more suit-
able for applications such as text categorization (in which n-gram features
are really informative).

1.3 Learning in NLP Tasks

Recent approaches for NLP tasks include neural network methods (as dis-
cussed in Section 1.2) that automatically extract useful information and

INTRODUCTION 9

NER Relation extraction

Figure 1.5: The task of NER and relation extraction in a pipeline fashion. The out-
put of the first module (i.e., the predicted entities) are the input for the
second module (i.e., the relation extractor).

achieve state-of-the-art performance. In this section, we present the most
well-known methods to train models in different NLP tasks.

1.3.1 Single task learning

Typically, in supervised NLP settings, we are interested to optimize our
model for a specific task. Specifically, the procedure is as follows: (i) col-
lect data for the task at hand (e.g., NER), (ii) split the data into a train, de-
velopment and test subsets, (iii) train the model, (iv) tune the parameters
over a particular metric (e.g., F1) on the development set, and (v) report the
performance on the test set. However, there are cases where we study two
or more tasks simultaneously (e.g., NER and relation extraction (RE), i.e.,
identify the type of the relation between two given entities) [49–53], part-
of-speech (POS) tagging (i.e., identify the part-of-speech for each token in
the sentence) and dependency parsing [54]). Traditionally, these tasks were
studied using pipeline models where the output of the first module is prop-
agated to the second module, etc. For instance, an example for the NER
and relation extraction case is illustrated in Fig. 1.5.

In addition, it is known [49, 55] that the main drawbacks of studying
tasks in a pipeline fashion are the following: (i) error propagation between
the components (e.g., NER and RE) and (ii) possible useful information
from one task is not exploited by the other (e.g., identifying a Works for
relation might be helpful for the NER module in detecting the type of the
two entities, i.e., Person (PER), Organization (ORG) and vice versa).

1.3.2 Multi-task learning

As mentioned in the previous section, there are cases where we study two
or more tasks simultaneously (e.g., NER - relation extraction [49–53], POS
tagging - chunking - dependency parsing - semantic relatedness - textual
entailment [56], syntactic chunking - supertagging - POS tagging [57]) and
we can benefit from the information learned during training for the stud-
ied tasks [58]. Thus, several complementary aspects of the input can be

10 CHAPTER 1

encoded by applying the learning process of the various tasks simultane-
ously. Several works have been proposed in this direction. For instance,
in Fig. 1.6, the model of [56] is illustrated, which is trained end-to-end
for the tasks of POS tagging, chunking, dependency parsing, semantic re-
latedness, and textual entailment. This way their model is able to cap-
ture linguistic hierarchies starting from simpler tasks (i.e., POS tagging)
to more complex ones (i.e., textual entailment). In another setting, Bingel
and Søgaard [59] exploited the idea of multi-task learning to identify po-
tential task relatedness among ten sequence labeling tasks such as chunk-
ing, keyword detection, POS tagging, etc. In additional work, Miwa and
Bansal [49] introduced the usage of shared parameters for the task of end-
to-end relation extraction (i.e., NER and relation extraction). In this thesis,
we also exploit the idea of multi-task learning to share information be-
tween the studied tasks (see Chapters 3-4B).

Figure 1.6: The joint many-task model proposed in [56] for POS tagging, chunk-
ing, dependency parsing, semantic relatedness, and textual entailment.
(Figure source [56])

1.4 NLP tasks

The aim in NLP is to automatically obtain high-level language comprehen-
sion. This can be achieved by resolving several core NLP problems such
as sequence labeling (see NER [35], POS tagging [60], etc.), dependency

INTRODUCTION 11

Smith headed the Disease Control Center Atlantain

I-PER O B-ORGO I-ORG I-ORG O B-LOC

.

O

John

B-PER

Figure 1.7: Example of a sentence using the BIO encoding scheme for the task of
NER. For instance, the B-ORG and I-ORG tags indicate the beginning
and the inside tokens of the entity “Disease Control Center”, respec-
tively.

parsing [37], question answering [10], text summarization [9], machine
translation [11], etc. A wide variety of neural models have been recently
proposed to solve all of the aforementioned tasks. In the following sub-
sections, we present the core NLP problems that we have focused on in
this thesis. Specifically, for each of the tasks, we describe its goal and we
present the related work.

1.4.1 Sequence labeling

In this thesis, we focus on sequence labeling tasks such as the NER task
(see Chapters 2-4B) and the sub-event detection problem (see Chapter 5).
We formulate both tasks as a sequence labeling problem, similar to pre-
vious works [24, 25]. For the sequence labeling problem, usually the BIO
(Beginning, Inside, Outside) encoding scheme is employed. For instance,
in the NER task (i.e., identify the core entities of a sentence), each entity
consists of multiple sequential tokens within the sentence and one should
assign a tag for every token in the sentence. That way, the entity arguments
(start and end position) and its type (e.g., ORG) are identified. To this end,
(i) the B-type (beginning) to the first token of the entity, (ii) the I-type (in-
side) to every other token within the entity, and (iii) the O tag (outside) if a
token is not part of an entity are assigned. Fig. 1.7 shows an example of the
BIO encoding tags assigned to the tokens of the sentence. This way, both
the boundaries (i.e., start and end positions of the entity) as well as their
corresponding type are defined.

For sequence labeling, a number of different methods have been pro-
posed, namely Hidden Markov Models (HMM) [19], Conditional Random
Fields (CRF) [20], Maximum Margin Markov Network (M3N) [61], gener-
alized support vector machines for structured output (SVMstruct) [62] and
Search-based Structured Prediction (SEARN) [63]. Those methods heavily
rely on hand-crafted features and an in-depth review can be found in [64].
Several variations of these models that also require manual feature engi-
neering have been used in different application settings (e.g., biology, so-

12 CHAPTER 1

Figure 1.8: An example sentence with its corresponding dependency parse tree.
(Figure source [72])

cial media context) and languages (e.g., Turkish) [65–68]. Recently, deep
learning with neural networks has been succesfully applied to sequence
labeling. Collobert et al. [69] proposed to use a convolutional neural net-
work (CNN) followed by a CRF layer over a sequence of word embed-
dings. In this direction, RNNs have also been widely used. Gillick et al. [70]
use a sequence-to-sequence approach for modeling the sequence labeling
task. In addition, several variants of combinations between LSTM and CRF
models have been proposed [24, 25, 71] achieving state-of-the-art perfor-
mance on publicly available datasets.

1.4.2 Dependency parsing

Dependency parsing is a well studied task in the NLP community, which
aims to analyze the grammatical structure of a sentence as illustrated in
the example of Fig. 1.8. Specifically, the goal of the dependency parsing
problem is to link each token to its syntactical parent token, so as to create
the dependency parse (set of dependencies that form a tree structure) of the
sentence. Assuming the sentence S = {w0w1...wt} where t is the number
of tokens within the sentence, a dependency is a pair (p, c) where p ∈ S is
the parent token and c ∈ S is the child token. The entity w0 is the dummy
root-symbol that only appears as parent. There are two well-established
ways to address the dependency parsing problem, via (i) graph-based and
(ii) transition-based parsers.
Graph-based: Dependency parsing can be framed as a graph-based struc-
tured problem over a directed graph G = (V, E), where the words and the
dependencies among them constitute the set of nodes (V) and the edges (E)
of the graph, respectively. Then the problem boils down to the search of
the maximum spanning tree (MST) in the directed graph. This graph struc-
ture is also depicted in the upper part of Fig. 1.8. In the work of [72, 73]

INTRODUCTION 13

dependency parsing requires the search of the highest scoring maximum
spanning tree in graphs for both projective (dependencies are not allowed
to cross) and non-projective (crossing dependencies are allowed) trees with
the Eisner algorithm [74] and the Chu-Liu-Edmonds algorithm [75, 76] re-
spectively. It was shown that exploiting higher-order information (e.g., sib-
lings, grand-parental relation) in the graph, instead of just using first-order
information (i.e., parent relations) [77, 78] may yield significant improve-
ments of the parsing accuracy but comes at the cost of an increased model
complexity. Koo et al. [79] made an important step towards globally nor-
malized models with hand-crafted features, by adapting the Matrix-Tree
Theorem (MTT) [80] to train over all non-projective dependency trees. Re-
cent advances in neural graph-based parsing [37, 81, 82] include the use of
LSTMs to capture richer contextual information compared to hand-crafted
feature-based methods. Our work (in Chapters 3-4B) is conceptually re-
lated to Zhang et al. [37], who formulated the dependency parsing prob-
lem as a head selection problem.
Transition-based: Transition-based parsers [83, 84] replace the exact in-
ference of the graph-based parsers by an approximate but faster inference
method. The dependency parsing problem is now solved by an abstract
state machine that gradually builds up the dependency tree token by to-
ken. The goal of this kind of parsers is to find the most probable transition
sequence from an initial configuration to some terminal configuration (i.e.,
a dependency parse tree) given a permissible set of actions (i.e., LEFT-ARC,
RIGHT-ARC, SHIFT) [85, 86]. In the simplest case (i.e., greedy inference),
a classifier predicts the next transition based on the current configuration.
Compared to graph-based dependency parsers, transition-based parsers
are able to scale better due to the linear time complexity while graph-based
complexity rises to O(n2). Chen and Manning [87] proposed a way of
learning a neural network classifier for use in a greedy, transition-based de-
pendency parser while using low-dimensional, dense word embeddings,
without the need of manually extracting features. Globally normalized
transition-based parsers [88] can be considered an extension of [87], as they
perform beam search for maintaining multiple hypotheses and introduce
global normalization with a CRF objective. Dyer et al. [36] introduced the
stack-LSTM model with push and pop operations which is able to learn
the parser transition states while maintaining a summary embedding of
its contents. Transition-based systems are well-known for their speed and
state-of-the-art performance and thus we include them in our study as
baselines in Chapter 2.

14 CHAPTER 1

John Smith headed the Disease Control Center

works for

Figure 1.9: An example sentence for relation extraction where the two entities are
colored in green and blue, respectively and the type of the relation be-
tween them is colored in red.

1.4.3 Relation extraction

The relation extraction (RE) task is defined as the identification of the rela-
tionships between pairs of entities and an example is illustrated in Fig. 1.9.
For instance, assuming that we have entities e1 and e2 (known in advance)
in sentence S, the aim of the task is to classify the type of the relation be-
tween the two entities. The main approaches for relation extraction rely ei-
ther on hand-crafted features [89, 90] or neural networks [91, 92]. Feature-
based methods focus on obtaining effective hand-crafted features, for in-
stance defining kernel functions [89, 93] and designing lexical, syntactic, se-
mantic features, etc. [90, 94]. Neural network models have been proposed
to overcome the issue of manually designing hand-crafted features leading
to improved performance. CNN-based [92, 95, 96] and RNN-based [97–99]
models have been introduced to automatically extract lexical and sentence
level features leading to a deeper language understanding. Vu et al. [100]
combine CNNs and RNNs using an ensemble scheme to achieve state-of-
the-art results.

1.5 Research contributions

In this section, we describe the main contribution of this thesis. Each chap-
ter tackles a core NLP problem with new methods. Table 1.1 gives an
overview of the various contributions presented in this thesis. In Chap-
ters 2-4B, we propose novel methods for the task of end-to-end relation ex-
traction (i.e., entity recognition and relation extraction) and in Chapter 5,
we frame the problem of sub-event detection in Twitter streams as a se-
quence labeling problem [101]. The contribution of each chapter is sum-
marized as follows:

• In Chapter 2, we (i) define a new real estate extraction problem where
the aim is to recover a tree-like structured representation of the prop-
erty (the property tree) based on its natural language description, (ii) in-
troduce structured learning methods that solve the newly defined

INTRODUCTION 15

Table 1.1: Overview of contributions presented in this thesis.

Chapter Task Contribution

2 Real-estate structure predic-
tion problem

Define the problem and propose a
two-step pipeline method

3 Real-estate structure predic-
tion problem

A new neural joint model that
outperform the two-step pipeline
methods

4A Multi-context entity recogni-
tion and relation extraction

A new neural joint model that
outperform several state-of-the-art
methods on the task

4B Multi-context entity recogni-
tion and relation extraction

Add adversarial perturbations on
top of our neural joint model pre-
sented in Chapter 4A

5 Sub-event detection in Twit-
ter streams

Frame the task as a sequence la-
beling problem to take into account
chronological information between
consecutive tweets

problem, and (iii) experimentally evaluate our models on the newly
created and annotated real-world data set.

• In Chapter 3, (i) we propose advanced neural models that consider
the two subtasks presented in Chapter 2 jointly (i.e., a new joint model
that encodes the two tasks of identifying entities as well as depen-
dencies between them, as a single problem, without the need of pa-
rameter sharing or pre-training of the first entity recognition module
separately), (ii) we compare the proposed joint model against estab-
lished pipeline approaches and we report a consistent performance
improvement, and (iii) we perform extensive analysis of several at-
tention mechanisms that enable our LSTM-based model to focus on
informative words and phrases, reporting an improved performance
compared to previous models.

• In Chapter 4A, we focus on a new general purpose joint model that
performs the two tasks of entity recognition and relation extraction
simultaneously while reducing the complexity of the model described
in Chapter 3. Our model achieves state-of-the-art performance in a
number of different contexts (i.e., news, biomedical, real estate) and
languages (i.e., English, Dutch) (including the dataset described in
Chapter 2) without relying on any manually engineered features nor
additional NLP tools.

• Chapter 4B, our contribution of the proposed method is twofold:

16 CHAPTER 1

(i) we investigate the consistent effectiveness of adversarial perturba-
tions as a regularization method over the multi-context baseline joint
model presented in Chapter 4A, with (ii) a large scale experimental
evaluation. Experimental results indicate that adversarial perturba-
tions improve the results for each task separately (i.e., entity recog-
nition and relation extraction), as well as the overall performance of
our joint model (presented in Chapter 4A), while reaching high per-
formance already during the first epochs of the training procedure.

• In Chapter 5, we address the problem of sub-event detection in Twit-
ter streams. We frame the problem as a sequence labeling task to
exploit the chronological relation between consecutive tweets. Our
work does take into account the chronological order and we predict
the presence and the type of a sub-event exploiting information from
previous tweets. Specifically, we (i) propose a new neural baseline
model that outperforms the state-of-the-art performance on the bi-
nary classification problem of detecting the presence/absence of sub-
-events in a sports stream, (ii) establish a new baseline for predict-
ing also the sub-event types, (iii) explicitly take into account chrono-
logical information, i.e., the relation among consecutive tweets, by
framing sub-event detection as a sequence labeling problem on top
of our baseline model, and (iv) perform an experimental study, in-
dicating the benefit of sequence labeling for sub-event detection in
sports Twitter streams.

• In Chapter 6, we (i) summarize the core findings/modeling approaches,
and (ii) outline future research directions opened by the work de-
scribed in this thesis.

INTRODUCTION 17

1.6 Publications

The research results obtained during this PhD research have been pub-
lished in scientific journals and presented at a series of international con-
ferences and workshops. The following list provides an overview of these
publications.

1.6.1 Publications in international journals
(listed in the Science Citation Index1)

I G. Bekoulis, J. Deleu, T. Demeester, and C. Develder, Joint Entity
Recognition and Relation Extraction as a Multi-head Selection Problem.
Published in Expert Systems with Applications. 114: 34-45, 2018. ac-
ceptance rate: 12%

II G. Bekoulis, J. Deleu, T. Demeester, and C. Develder, An attentive
neural architecture for joint segmentation and parsing and its application
to real estate ads. Published in Expert Systems with Applications. 102,
100-112, 2018. acceptance rate: 12%

1.6.2 Publications in international conferences

III G. Bekoulis, J. Deleu, T. Demeester, and C. Develder, Sub-event detec-
tion from twitter streams as a sequence labeling problem. 2019 Annual
Conference of the North American Chapter of the Association for
Computational Linguistics, 2019. acceptance rate: 23%

IV G. Bekoulis, J. Deleu, T. Demeester, and C. Develder, Adversarial
training for multi-context joint entity and relation extraction. 2018 Con-
ference on Empirical Methods in Natural Language Processing. pp.
2830-2836, 2018. acceptance rate: 23.2%, 9.5% for oral

V G. Bekoulis, J. Deleu, T. Demeester, and C. Develder, Reconstructing
the house from the ad: Structured prediction on real estate classifieds. 15th
Conference of the European Chapter of the Association for Compu-
tational Linguistics. pp. 274-279, 2017. acceptance rate: 24%

1The publications listed are recognized as ‘A1 publications’, according to the following
definition used by Ghent University: “A1 publications are articles listed in the Science Citation
Index, the Social Science Citation Index or the Arts and Humanities Citation Index of the ISI Web of
Science, restricted to contributions listed as article, review, letter, note or proceedings paper.”

18 CHAPTER 1

1.6.3 Publications in international conferences (not included
in this thesis)

VII S. Bitew, G. Bekoulis, J. Deleu, L. Sterckx, K. Zaporojets, T. De-
meester, and C. Develder, Predicting Suicide Risk from Online Postings
in Reddit – The UGent-IDLab submission to the CLPysch 2019 Shared Task
A. 6th Ann. Workshop on Computational Linguistics and Clinical
Psychology (CLPsych 2019) at NAACL-HLT, 2019.

VIII G. Bekoulis, F. Rousseau, Graph-based Term Weighting Scheme for Topic
Modeling. 2016 IEEE 16th International Conference on Data Mining:
Workshops (ICDMW). pp. 1039-1044, 2016.

INTRODUCTION 19

References

[1] C. Perlich, B. Dalessandro, T. Raeder, O. Stitelman, and
F. Provost. Machine learning for targeted display advertising: trans-
fer learning in action. Machine Learning, 95(1):103–127, Apr
2014. Available from: https://doi.org/10.1007/s10994-013-5375-2,
doi:10.1007/s10994-013-5375-2.

[2] Q. Diao, M. Qiu, C.-Y. Wu, A. J. Smola, J. Jiang, and C. Wang.
Jointly Modeling Aspects, Ratings and Sentiments for Movie Recom-
mendation (JMARS). In Proceedings of the 20th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Min-
ing, KDD ’14, pages 193–202, New York, NY, USA, 2014.
ACM. Available from: http://doi.acm.org/10.1145/2623330.
2623758, doi:10.1145/2623330.2623758.

[3] H. Wang, Z. Lu, H. Li, and E. Chen. A dataset for research on short-text
conversations. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages 935–945, 2013.

[4] A. Graves, A. r. Mohamed, and G. Hinton. Speech recogni-
tion with deep recurrent neural networks. In Proceedings of the
International Conference on Acoustics, Speech and Signal Pro-
cessing, pages 6645–6649, Vancouver, Canada, 26–31 May. 2013.
doi:10.1109/ICASSP.2013.6638947.

[5] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al. End
to End Learning for Self-Driving Cars. 2016.

[6] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c.
Woo. Convolutional LSTM network: A machine learning approach for pre-
cipitation nowcasting. In Advances in neural information processing
systems, pages 802–810, 2015.

[7] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[8] T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in
deep learning based natural language processing. ieee Computational
intelligenCe magazine, 13(3):55–75, 2018.

[9] S. Narayan, S. B. Cohen, and M. Lapata. DonâĂŹt Give Me the Details,
Just the Summary! Topic-Aware Convolutional Neural Networks for Ex-
treme Summarization. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing, pages 1797–1807,
2018.

https://doi.org/10.1007/s10994-013-5375-2
http://doi.acm.org/10.1145/2623330.2623758
http://doi.acm.org/10.1145/2623330.2623758

20 CHAPTER 1

[10] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. Bidirectional
attention flow for machine comprehension. In Proceedings of the Inter-
national Conference for Learning Representations, 2017.

[11] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by
jointly learning to align and translate. In Proceedings of the Interna-
tional Conference for Learning Representations, San Diego, USA, 7–
9 May 2015.

[12] T. Joachims. Text categorization with Support Vector Machines: learning
with many relevant features. In Proceedings of the 10th European Con-
ference on Machine Learning, pages 137–142. Springer-Verlag, 1998.

[13] K. S. Hasan and V. Ng. Automatic keyphrase extraction: A survey of
the state of the art. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
volume 1, pages 1262–1273, 2014.

[14] E. Papagiannopoulou and G. Tsoumakas. A Review of Keyphrase Ex-
traction. arXiv preprint arXiv:1905.05044, 2019.

[15] R. Blanco and C. Lioma. Graph-based term weighting for information
retrieval. Information retrieval, 15(1):54–92, 2012.

[16] R. Mihalcea and P. Tarau. Textrank: Bringing order into text. In Pro-
ceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing, 2004.

[17] F. D. Malliaros and K. Skianis. Graph-based term weighting for text
categorization. In Proceedings of the 2015 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining
2015, pages 1473–1479. ACM, 2015.

[18] G. Bekoulis and F. Rousseau. Graph-based term weighting scheme for
topic modeling. In 2016 IEEE 16th International Conference on Data
Mining Workshops (ICDMW), pages 1039–1044. IEEE, 2016.

[19] L. Rabiner and B. Juang. An introduction to hidden
Markov models. IEEE ASSP Magazine, 3(1):4–16, 1986.
doi:10.1109/MASSP.1986.1165342.

[20] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Pro-
ceedings of the 18th International Conference on Machine Learn-
ing, pages 282–289, San Francisco, USA, 28 Jun.–1 Jul. 2001. Morgan
Kaufmann.

INTRODUCTION 21

[21] H. Gurulingappa, A. Mateen-Rajpu, and L. Toldo. Extraction of poten-
tial adverse drug events from medical case reports. Journal of Biomedical
Semantics, 3(1):1–15, 2012. doi:10.1186/2041-1480-3-15.

[22] J. Nichols, J. Mahmud, and C. Drews. Summarizing Sporting Events
Using Twitter. In Proceedings of the 2012 ACM International Con-
ference on Intelligent User Interfaces, pages 189–198, New York,
NY, USA, 2012. ACM. Available from: http://doi.acm.org/10.
1145/2166966.2166999, doi:10.1145/2166966.2166999.

[23] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. Reconstruct-
ing the house from the ad: Structured prediction on real estate classifieds.
In Proceedings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: (Volume 2, Short Pa-
pers), pages 274–279, Valencia, Spain, 3–7 Apr. 2017.

[24] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and
C. Dyer. Neural Architectures for Named Entity Recognition. In Proceed-
ings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies, pages 260–270, San Diego, California, 12–17 Jun. 2016.

[25] X. Ma and E. Hovy. End-to-end Sequence Labeling via Bi-directional
LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
pages 1064–1074, Berlin, Germany, 7–12 Aug. 2016.

[26] Y. Kim. Convolutional Neural Networks for Sentence Classification. In
Proceedings of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1746–1751. Association
for Computational Linguistics, 2014. Available from: http://aclweb.
org/anthology/D14-1181, doi:10.3115/v1/D14-1181.

[27] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III. Deep Un-
ordered Composition Rivals Syntactic Methods for Text Classification. In
Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 1681–
1691. Association for Computational Linguistics, 2015. Available
from: http://aclweb.org/anthology/P15-1162, doi:10.3115/v1/P15-
1162.

[28] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy. Hier-
archical Attention Networks for Document Classification. In Proceed-
ings of the 2016 Conference of the North American Chapter of the

http://doi.acm.org/10.1145/2166966.2166999
http://doi.acm.org/10.1145/2166966.2166999
http://aclweb.org/anthology/D14-1181
http://aclweb.org/anthology/D14-1181
http://aclweb.org/anthology/P15-1162

22 CHAPTER 1

Association for Computational Linguistics: Human Language Tech-
nologies, pages 1480–1489. Association for Computational Linguis-
tics, 2016. Available from: http://aclweb.org/anthology/N16-1174,
doi:10.18653/v1/N16-1174.

[29] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to Sequence Learning
with Neural Networks. In Proceedings of the 27th International Con-
ference on Neural Information Processing Systems, pages 3104–3112,
Montreal, Canada, 08–13 Dec. 2014. MIT Press.

[30] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Dis-
tributed Representations of Words and Phrases and their Compositionality.
In Proceedings of the 26th International Conference on Neural Infor-
mation Processing Systems, pages 3111–3119, Nevada, United States,
5–10 Dec. 2013. Curran Associates, Inc.

[31] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing, pages 1532–1543,
2014.

[32] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural
computation, 9(8):1735–1780, 1997. doi:10.1162/neco.1997.9.8.1735.

[33] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, Nov 1998. doi:10.1109/5.726791.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Ad-
vances in neural information processing systems, pages 5998–6008,
2017.

[35] J. Chiu and E. Nichols. Named Entity Recognition with Bidirectional
LSTM-CNNs. Transactions of the Association for Computational Lin-
guistics, 4:357–370, 2016.

[36] C. Dyer, M. Ballesteros, W. Ling, A. Matthews, and N. A. Smith.
Transition-Based Dependency Parsing with Stack Long Short-Term Mem-
ory. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 1: Long Papers),
pages 334–343, Beijing, China, 26–31 Jul. 2015.

http://aclweb.org/anthology/N16-1174

INTRODUCTION 23

[37] X. Zhang, J. Cheng, and M. Lapata. Dependency Parsing as Head Selec-
tion. In Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: (Volume 1, Long
Papers), pages 665–676, Valencia, Spain, 3–7 Apr. 2017.

[38] T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic regularities in continu-
ous space word representations. In Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 746–751, 2013.

[39] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer. Deep Contextualized Word Representations. In Proceed-
ings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237, 2018.

[40] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving
language understanding by generative pre-training. 2018.

[41] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever.
Language models are unsupervised multitask learners. 2019.

[42] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. In Proceed-
ings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), 2019.

[43] Understanding LSTM Networks. https://colah.github.
io/posts/2015-08-Understanding-LSTMs/. Accessed: 2019-04-
30.

[44] J. L. Elman. Finding structure in time. Cognitive science, 14(2):179–
211, 1990.

[45] Y. Bengio, P. Simard, and P. Frasconi. Learning Long-term Dependencies
with Gradient Descent is Difficult. Transactions on neural networks,
5(2):157–166, 1994. doi:10.1109/72.279181.

[46] R. Pascanu, T. Mikolov, and Y. Bengio. On the Difficulty of Training
Recurrent Neural Networks. In Proceedings of the 30th International
Conference on International Conference on Machine Learning, pages
1310–1318, Atlanta, USA, 16–21 Jun. 2013. JMLR.org.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

24 CHAPTER 1

[47] Y. Zhang and B. Wallace. A Sensitivity Analysis of (and Practition-
ers’ Guide to) Convolutional Neural Networks for Sentence Classifica-
tion. In Proceedings of the Eighth International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pages
253–263, Taipei, Taiwan, November 2017. Asian Federation of Nat-
ural Language Processing. Available from: https://www.aclweb.
org/anthology/I17-1026.

[48] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural infor-
mation processing systems, pages 1097–1105, 2012.

[49] M. Miwa and M. Bansal. End-to-End Relation Extraction using LSTMs
on Sequences and Tree Structures. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1105–1116, Berlin, Germany, 7–12 Aug. 2016.

[50] A. Katiyar and C. Cardie. Going out on a limb: Joint Extraction of Entity
Mentions and Relations without Dependency Trees. In Proceedings of the
55st Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), Vancouver, Canada, 2017.

[51] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. An attentive
neural architecture for joint segmentation and parsing and its application
to real estate ads. Expert Systems with Applications, 102:100 – 112,
2018. doi:10.1016/j.eswa.2018.02.031.

[52] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. Joint entity recog-
nition and relation extraction as a multi-head selection problem. Expert
Systems with Applications, 114:34–45, 2018.

[53] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. Adversarial
training for multi-context joint entity and relation extraction. In Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 2830–2836, 2018.

[54] D. Q. Nguyen and K. Verspoor. An Improved Neural Network Model
for Joint POS Tagging and Dependency Parsing. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pages 81–91, 2018.

[55] M. Miwa and Y. Sasaki. Modeling Joint Entity and Relation Extrac-
tion with Table Representation. In Proceedings of the 2014 Conference

https://www.aclweb.org/anthology/I17-1026
https://www.aclweb.org/anthology/I17-1026

INTRODUCTION 25

on Empirical Methods in Natural Language Processing, pages 1858–
1869, Doha, Qatar, 25–29 Oct. 2014. Association for Computational
Linguistics.

[56] K. Hashimoto, Y. Tsuruoka, R. Socher, et al. A Joint Many-Task Model:
Growing a Neural Network for Multiple NLP Tasks. In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1923–1933, 2017.

[57] A. Søgaard and Y. Goldberg. Deep multi-task learning with low level
tasks supervised at lower layers. In The 54th Annual Meeting of the
Association for Computational Linguistics, page 231, 2016.

[58] R. Caruana. Multitask Learning: A Knowledge-Based Source of Induc-
tive Bias. In Proceedings of the Tenth International Conference on
Machine Learning, pages 41–48. Morgan Kaufmann, 1993.

[59] J. Bingel and A. Søgaard. Identifying beneficial task relations for multi-
task learning in deep neural networks. In Proceedings of the 15th Con-
ference of the European Chapter of the Association for Computa-
tional Linguistics: Volume 2, Short Papers, pages 164–169, 2017.

[60] W. Ling, C. Dyer, A. W. Black, I. Trancoso, R. Fermandez, S. Amir,
L. Marujo, and T. Luis. Finding Function in Form: Compositional Char-
acter Models for Open Vocabulary Word Representation. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 1520–1530, Lisbon, Portugal, 2015. Association for
Computational Linguistics. doi:10.18653/v1/D15-1176.

[61] B. Taskar, C. Guestrin, and D. Koller. Max-Margin Markov networks.
In Proceedings of the 16th International Conference on Neural Infor-
mation Processing Systems, pages 25–32. MIT Press, Bangkok, Thai-
land, 1–5 Dec. 2003.

[62] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Sup-
port Vector Machine Learning for Interdependent and Structured Out-
put Spaces. In Proceedings of the 21st International Conference on
Machine Learning, pages 104–112, Helsinki, Finland, 5–9 Jul. 2004.
ACM. doi:10.1145/1015330.1015341.

[63] H. Daumé III, J. Langford, and D. Marcu. Search-based struc-
tured prediction. Machine Learning Journal, 75(3):297–325, 2009.
doi:10.1007/s10994-009-5106-x.

26 CHAPTER 1

[64] N. Nguyen and Y. Guo. Comparisons of Sequence Labeling Algorithms
and Extensions. In Proceedings of the 24th International Conference
on Machine Learning, pages 681–688, Corvallis, USA, 20–24 Jun.
2007. ACM. doi:10.1145/1273496.1273582.

[65] J. J. Jung. Online named entity recognition method for microtexts in social
networking services: A case study of twitter. Expert Systems with Ap-
plications, 39(9):8066 – 8070, 2012. doi:10.1016/j.eswa.2012.01.136.

[66] D. Küçük and A. Yazıcı. A hybrid named entity recognizer for Turk-
ish. Expert Systems with Applications, 39(3):2733 – 2742, 2012.
doi:10.1016/j.eswa.2011.08.131.

[67] J. Atkinson and V. Bull. A multi-strategy approach to biological named
entity recognition. Expert Systems with Applications, 39(17):12968 –
12974, 2012. doi:10.1016/j.eswa.2012.05.033.

[68] M. Konkol, T. Brychcín, and M. Konopík. Latent semantics in Named
Entity Recognition. Expert Systems with Applications, 42(7):3470 –
3479, 2015. doi:10.1016/j.eswa.2014.12.015.

[69] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa. Natural Language Processing (Almost) from Scratch. Journal
of Machine Learning Research, 12:2493–2537, November 2011.

[70] D. Gillick, C. Brunk, O. Vinyals, and A. Subramanya. Multilingual
Language Processing From Bytes. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 1296–1306,
San Diego, California, 12–17 Jun. 2016.

[71] Z. Huang, W. Xu, and K. Yu. Bidirectional LSTM-CRF models for se-
quence tagging. arXiv preprint arXiv:1508.01991, 2015.

[72] R. McDonald and F. Pereira. Online Learning of Approximate Depen-
dency Parsing Algorithms. In Proceedings of the 11th Conference of
the European Chapter of the Association for Computational Linguis-
tics, pages 81–88, Trento, Italy, 5–6 Apr. 2007.

[73] R. McDonald, F. Pereira, K. Ribarov, and J. Hajic. Non-Projective De-
pendency Parsing using Spanning Tree Algorithms. In Proceedings of
Human Language Technology Conference and Conference on Em-
pirical Methods in Natural Language Processing, pages 523–530,
Vancouver, British Columbia, Canada, 06–08 Oct. 2005. Association
for Computational Linguistics.

INTRODUCTION 27

[74] J. M. Eisner. Three New Probabilistic Models for Dependency Parsing: An
Exploration. In Proceedings of the 16th International Conference on
Computational Linguistics (Volume 1), pages 340–345, Copenhagen,
Denmark, 5–9 Aug. 1996.

[75] Y.-J. Chu and T.-H. Liu. On shortest arborescence of a directed graph.
Scientia Sinica, 14:1396âĂŞ–1400, 1965.

[76] J. Edmonds. Optimum branchings. Journal of research of the National
Bureau of Standards, 71B(4):233–240, 1967.

[77] X. Carreras. Experiments with a Higher-Order Projective Dependency
Parser. In Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Nat-
ural Language Learning, pages 957–961, Prague, Czech, 28–30 Jun.
2007. Association for Computational Linguistics.

[78] H. Zhang and R. McDonald. Generalized Higher-Order Dependency
Parsing with Cube Pruning. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, pages 320–331, Jeju Is-
land, Korea, 12–14 Jul. 2012. Association for Computational Linguis-
tics.

[79] T. Koo, A. Globerson, X. Carreras, and M. Collins. Structured Predic-
tion Models via the Matrix-Tree Theorem. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learning, pages 141–
150, Prague, Czech, 28–30 Jun. 2007. Association for Computational
Linguistics.

[80] W. T. Tutte. Graph Theory. In Encyclopedia of Mathematics and
its Applications, volume 21, page 138. Cambridge University Press,
2001.

[81] E. Kiperwasser and Y. Goldberg. Simple and Accurate Dependency
Parsing Using Bidirectional LSTM Feature Representations. Transactions
of the Association for Computational Linguistics, 4:313–327, 2016.

[82] W. Wang and B. Chang. Graph-based Dependency Parsing with Bidi-
rectional LSTM. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
pages 2306–2315, Berlin, Germany, 7–12 Aug. 2016.

28 CHAPTER 1

[83] H. Yamada and Y. Matsumoto. Statistical dependency analysis with sup-
port vector machines. In Proceedings of the 8th International Work-
shop on Parsing Technologies, pages 195–206, Nancy, France, 23–25
Apr. 2003.

[84] J. Nivre, J. Hall, J. Nilsson, G. Eryiǧit, and S. Marinov. Labeled
Pseudo-Projective Dependency Parsing with Support Vector Machines. In
Proceedings of the 10th Conference on Computational Natural Lan-
guage Learning, pages 221–225, New York, USA, 8–9 Jun. 2006. As-
sociation for Computational Linguistics.

[85] J. Nivre. An efficient algorithm for projective dependency parsing. In Pro-
ceedings of the 8th International Workshop on Parsing Technologies,
pages 149–160, Nancy, France, 23–25 Apr. 2003.

[86] J. Nivre. Non-Projective Dependency Parsing in Expected Linear Time.
In Proceedings of the Joint Conference of the 47th Annual Meeting
of the Association for Computational Linguistics and the 4th Interna-
tional Joint Conference on Natural Language Processing of the Asian
Federation of Natural Language Processing, pages 351–359, Singa-
pore, 2–7 Aug. 2009.

[87] D. Chen and C. Manning. A Fast and Accurate Dependency Parser using
Neural Networks. In Proceedings of the 2014 Conference on Empiri-
cal Methods in Natural Language Processing, pages 740–750, Doha,
Qatar, 25–29 Oct. 2014. Association for Computational Linguistics.

[88] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev,
S. Petrov, and M. Collins. Globally Normalized Transition-Based Neural
Networks. In Proceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pages
2442–2452, Berlin, Germany, 7–12 Aug. 2016.

[89] D. Zelenko, C. Aone, and A. Richardella. Kernel Methods for Relation
Extraction. Journal of Machine Learning Research, 3:1083–1106, 2003.
doi:10.3115/1118693.1118703.

[90] N. Kambhatla. Combining lexical, syntactic, and semantic features with
maximum entropy models for extracting relations. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics
on Interactive poster and demonstration sessions, Barcelona, Spain,
2004. doi:10.3115/1219044.1219066.

[91] R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. Semantic compo-
sitionality through recursive matrix-vector spaces. In Proceedings of the

INTRODUCTION 29

2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pages
1201–1211, Jeju Island, Korea, 12–14 Jul. 2012. Association for Com-
putational Linguistics.

[92] D. Zeng, K. Liu, S. Lai, G. Zhou, and J. Zhao. Relation classifica-
tion via convolutional deep neural network. In Proceedings of COLING
2014, the 25th International Conference on Computational Linguis-
tics: Technical Papers, pages 2335–2344, 2014.

[93] A. Culotta and J. Sorensen. Dependency tree kernels for relation extrac-
tion. In Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics, pages 423–429, Barcelona, Spain, 2004.
doi:10.3115/1218955.1219009.

[94] B. Rink and S. Harabagiu. Utd: Classifying semantic relations by com-
bining lexical and semantic resources. In Proceedings of the 5th Inter-
national Workshop on Semantic Evaluation, pages 256–259, Los An-
geles, California, 2010. Association for Computational Linguistics.

[95] K. Xu, Y. Feng, S. Huang, and D. Zhao. Semantic Relation Classifica-
tion via Convolutional Neural Networks with Simple Negative Sampling.
In Proceedings of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 536–540, Lisbon, Portugal, Septem-
ber 2015. Association for Computational Linguistics. Available from:
http://aclweb.org/anthology/D15-1062.

[96] C. dos Santos, B. Xiang, and B. Zhou. Classifying Relations by Ranking
with Convolutional Neural Networks. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pages 626–634, Beijing, China, 26–31
Jul. 2015.

[97] R. Socher, D. Chen, C. D. Manning, and A. Ng. Reasoning With
Neural Tensor Networks for Knowledge Base Completion. In Proceedings
of the 26th International Conference on Neural Information Process-
ing Systems, pages 926–934, Nevada, United States, 5–10 Dec. 2013.
Curran Associates, Inc.

[98] D. Zhang and D. Wang. Relation classification via recurrent neural net-
work. arXiv preprint arXiv:1508.01006, 2015.

[99] Y. Xu, L. Mou, G. Li, Y. Chen, H. Peng, and Z. Jin. Classifying Rela-
tions via Long Short Term Memory Networks along Shortest Dependency

http://aclweb.org/anthology/D15-1062

30 CHAPTER 1

Paths. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1785–1794, Lisbon, Portugal,
17–21 Sept. 2015. Association for Computational Linguistics.

[100] N. T. Vu, H. Adel, P. Gupta, and H. Schütze. Combining Recurrent and
Convolutional Neural Networks for Relation Classification. In Proceed-
ings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies, pages 534–539, San Diego, California, June 2016. Available
from: http://www.aclweb.org/anthology/N16-1065.

[101] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. Sub-event detec-
tion from twitter streams as a sequence labeling problem. In Proceedings
of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 745–750, Minneapolis,
Minnesota, June 2019. doi:10.18653/v1/N19-1081.

http://www.aclweb.org/anthology/N16-1065

2
Reconstructing the house from the

ad: Structured prediction on real
estate classifieds

In this chapter, we introduce a new structured prediction problem for real estate
properties. In this task, we aim to recover a hierarchical structured representation
of a property based only on its textual advertisement. In addition, we propose var-
ious methods to resolve the newly defined structured prediction problem. We split
the problem into simpler subtasks that resolve the problem in a pipeline setting.
Specifically, the pipeline of subtasks is the following: (i) named entity recognition
for real estate entities, (ii) dependency parsing for predicting the part-of relation-
ships between the identified pairs of real estate entities, and (iii) a maximum span-
ning tree algorithm for recovering the tree structured description of the property
(i.e., the desired property tree).

? ? ?

G. Bekoulis, J. Deleu, T. Demeester and C. Develder

In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics, 2017.

32 CHAPTER 2

Abstract In this paper, we address the new (to the best of our knowledge)
problem of extracting a structured description of real estate properties from
their natural language descriptions in classifieds. We survey and present
several models to (a) identify important entities of a property (e.g., rooms)
from classifieds and (b) structure them into a tree format, with the entities
as nodes and edges representing a part-of relation. Experiments show that
a graph-based system deriving the tree from an initially fully connected
entity graph outperforms a transition-based system starting from only the
entity nodes, since it better reconstructs the tree.

2.1 Introduction

In the real estate domain, user-generated free text descriptions form a highly
useful but unstructured representation of real estate properties. However,
there is an increasing need for people to find useful (structured) informa-
tion from large sets of such descriptions, and for companies to propose
sales/rentals that best fit the clients’ needs, while keeping human reading
effort limited. For example, real estate descriptions in natural language
may not be directly suited for specific search filters that potential buyers
want to apply. On the other hand, a hierarchical data structure represent-
ing the real estate property enables specialized filtering (e.g., based on the
number of bedrooms, number of floors, or the requirement of having a
bathroom with a toilet on the first floor), and is expected to also benefit
related applications such as automated price prediction [1, 2].

Our primary objective is to define the new real estate structure extrac-
tion problem, and explore its solution using combinations of state-of-the-
art methods, thus establishing its difficulty by obtaining performance re-
sults for future reference. More specifically, we contribute with: (i) the
definition of the real estate extraction problem, amounting to a tree-like
structured representation of the property (the property tree) based on its
natural language description; (ii) the introduction of structured learning
methods that solve the newly defined problem; and (iii) experimental eval-
uation of the systems on a newly created and annotated real-world data
set. For Part (ii), we break down the problem into simpler components, us-
ing (1) Conditional Random Fields (CRFs) for real estate entity recognition
(where entities are floors, rooms, sub-spaces in rooms, etc.), (2) non-projec-
tive dependency parsing to predict the part-of relationships between such
entities (comparing local and global graph-based, and transition-based al-
gorithms), and (3) a maximum spanning tree algorithm for decoding the
desired property tree.

STRUCTURED PREDICTION ON REAL ESTATE CLASSIFIEDS 33

2.2 Related work

The challenge in structured prediction largely stems from the size of the
output space. Specifically in NLP, for sequence labeling (e.g., named entity
recognition), which is the first building block of our system, a number of
different methods have been proposed, namely CRFs [3], Maximum Mar-
gin Markov Network (M3N) [4], SVMstruct [5] and SEARN [6].

We exploit dependency parsing methods for the construction of the
property tree which is similar to the problem of learning the dependency
arcs of a sentence. Dependency parsing research has focused on both graph-
based and transition-based parsers. McDonald et al. [7, 8] have shown that
treating dependency parsing as the search of the highest scoring maximum
spanning tree in graphs yields efficient algorithms for both projective (de-
pendencies are not allowed to cross) and non-projective (crossing depen-
dencies are allowed) trees. Later, Koo et al. [9], adapted the Matrix-Tree
Theorem [10] for globally normalized training over all non-projective de-
pendency trees. On the other hand, transition-based dependency parsing
aims to predict a transition sequence from an initial configuration to some
terminal configuration and handles both projective and non-projective de-
pendencies [11, 12]. Recent advances on those systems involve neural scor-
ing functions [13] and globally normalized models [14].

More recently, a substantial amount of work (Kate and Mooney [15], Li
and Ji [16], Miwa and Sasaki [17] and Li et al. [18]) jointly considered the
two subtasks of entity recognition and dependency parsing. Our work is
different since we aim to handle directed spanning trees, or equivalently
non-projective dependency structures (i.e., the entities involved in a re-
lation are not necessarily adjacent in the text since other entities may be
mentioned in between), which complicates parsing.

2.3 Structured prediction of real estate properties

We now present the real estate extraction problem and our proposed proof-
of-concept solutions.

2.3.1 Problem formulation

We define entities and entity types for our real estate extraction task. We de-
fine an entity as an unambiguous, unique part of a property with indepen-
dent existence (e.g., bedroom, kitchen, attic). We define as entity mention,
a textual phrase (e.g., “a small bedroom”) that we can potentially link to
one or more of the entities and whose semantic meaning unambiguously

34 CHAPTER 2

Table 2.1: Real estate entity types.

Entity type Description Examples

property The property. bungalow, apartment
floor A floor in a building. ground floor
space A room within the building. bedroom, bathroom
subspace A part of a room. shower, toilet
field An open space inside or out-

side the building.
bbq, garden

extra building An additional building
which is also part of the
property.

garden house

represents a specific entity. Each entity can occur several times in the text,
possibly with different mentions and we further classify entities into types
as listed in Table 2.1.

The goal of our structured prediction task is to convert the given input
text to a structured representation in the form of a so-called property tree,
as illustrated in Fig. 2.1. That conversion implies both the detection of en-
tities of various types (the “house” property entity, and the spaces “living
room”, “kitchen”, etc.) as well as the part-of dependencies between them
(e.g., that the “kitchen” is a part of the “house”). We cast the tree construc-
tion given the entities as a dependency parsing task over the search of the
most probable property tree, since (i) this means decisions on all possible
part-of relations are taken jointly (e.g., a certain room can only be part of a
single floor), and (ii) we can deal with the fact that there are no hard a priori
constraints on the types of entities that can be part of others (e.g., a room
can be either part of a floor, or the property itself, like an apartment). It’s
worth mentioning that dependency annotations for our problem exhibit a
significant number of non-projective arcs (26%), meaning that entities in-
volved in the part-of relation are non-adjacent (i.e., interleaved by other
entities), as intuitively expected.

2.3.2 Structured prediction model

We now describe the constituents of our pipeline to solve the property tree
extraction from natural language ads, as sketched in Fig. 2.2: (1) recognize
the entity mentions (Section 2.3.2.1), then (2) identify the part-of dependen-
cies between those entity mentions (Section 2.3.2.2), and finally (3) con-
struct the tree structure of the property (e.g., as in Fig. 2.1). In Step (2),
we focus on comparing locally and globally trained graph-based models

STRUCTURED PREDICTION ON REAL ESTATE CLASSIFIEDS 35

Original ad:
The property includes an apartment house
with a garage. The house has living room,
kitchen and bathroom with shower.
--
Structured representation:
house | mention=apartment house

living room | mention=living room
kitchen | mention=kitchen
bathroom | mention=bathroom

shower | mention=shower
garage | mention=garage

Figure 2.1: Sample unstructured ad and corresponding structured representation
as a property tree.

(1) entity
recognition

(2) part-of RE (3) tree
construction

...

(2+3) direct tree construction

Figure 2.2: The full structured prediction pipeline.

and a transition-based one. We only explicitly perform Step (3) in graph-
based models, by applying the maximum spanning-tree algorithm [19, 20]
for the directed case (see McDonald et al. [7]). As an alternative, we use
a transition-based system, which by definition deals with non-projective
trees, and does not need spanning tree inference.

2.3.2.1 Sequence labeling

The first step in our structured prediction baseline is a sequence labeling
task, similar to NER: given a real estate ad’s plain text, we extract the entity
mention boundaries and map the type of the entity mentions. We adopt
linear chain CRFs, a special case of the CRF algorithm [3, 21], widely used
for the problem of sequence labeling. We have used several features for our
CRF model. A non-exhaustive list of features includes the current token,

36 CHAPTER 2

the previous token, the next token, shape features (of previous, current and
next tokens, e.g., Bill→ Xxxx), various combinations of the aforementioned
features (e.g., concatenation of previous and current tokens, concatenation
of shape features), etc.

2.3.2.2 Part-of tree construction

The aim of this component is to connect each entity to its parent. This is
similar to dependency parsing but instead of mapping the whole sentence,
we map only the identified entity set x (e.g., house) to a dependency struc-
ture y. Given the entity set x with n terms, a dependency is a tuple (p, c)
where p ∈ {0, ..., n} is the index of the parent term in entity set x, p = 0 is
the root-symbol (only appears as parent) and c ∈ {1, ..., n} is the index of
the child term in the entity set. We use D(x) to refer to all possible depen-
dencies of x and T(x) to all possible dependency structures.

We now present our approaches to solve this part-of tree construction
problem.

Locally trained model (Threshold/Edmonds)

We focus on local discriminative training methods [22] where a binary clas-
sifier learns the part-of relation model (Step (2)). Given a candidate parent-
child pair, the classifier scores reflect how likely the part-of relation holds.
The output is then used for the next and final Step (3) of constructing the
property tree. Specifically, we construct a fully connected directed graph
G = {V, E} with the entities as nodes V, and edges E representing the
part-of relation with the respective classifier scores as weights. A naive
approach to obtain the tree prediction is threshold-based: keep all edges
with weights exceeding a threshold. This is obviously not guaranteed to
end up being a tree and might even contain cycles. Our approach directly
aims at finding the maximum spanning tree inside the (directed) graph to
enforce a tree structure. To this end, techniques designed for dependency
parsing in natural text can be used, more in particular we use Edmonds’
algorithm [7].

Globally trained model (MTT)

The Matrix-Tree theorem (MTT) [9] provides the algorithmic framework
to train globally normalized models that involve directed spanning trees,
i.e., score parse trees for a given sentence. Assume we have a vector θ in
which each value θh,m ∈ R corresponds to a weight ∀(h, m) ∈ D(x), where
h and m are the parent and child entities, respectively. The conditional

STRUCTURED PREDICTION ON REAL ESTATE CLASSIFIEDS 37

distribution over all dependency structures y ∈ T(x) is:

P(y|x; θ) =
1

Z(x; θ)
exp

(
∑

h,m∈y
θh,m

)
(2.1)

normalized by the partition function Z(x; θ), which would require a sum-
mation over the exponentially large number of all possible dependency
structures in T(x). However, the MTT allows directly computing Z(x; θ)
as det(L(θ)), in which L(θ) is the Laplacian matrix of the graph.

Transition-based dependency parsing (TB)

Given that our system needs to be able to handle non-projective depen-
dency arcs, we employ a greedy transition-based parsing system [12, 23]
as the basis of our parser. The system is defined as a configuration C =
(Σ, B, A) which consists of Σ the stack, B the buffer and A the set of depen-
dency arcs. The aim is, given an initial configuration and a set of permissi-
ble actions, to predict a transition sequence to some terminal configuration
to derive a dependency parse tree. We define the initial configuration for
an entity set x = w1, ..., wn to be ([root],[w1, ..., wn],{}) and the terminal con-
figuration ([0],[],A) (for any arc set A). The first three actions (LEFT-ARC,
RIGHT-ARC, SHIFT) are defined similar to arc-standard systems [11] for
projective dependency parsing. In addition, the SWAP operation reorders
the input words, thus allowing to derive non-projective trees [12].

2.4 Experimental results

We present results for the total real estate framework as well as for each
step individually.

2.4.1 Experimental setup

We collected 887,599 Dutch property advertisements from a real estate com-
pany.1 Three human annotators manually annotated 2,318 ads (1 anno-
tation per ad, ∼773 ads per annotator) by creating the property tree of
the advertisements. The dataset is available for research purposes, see
our Github codebase.2 In our experiments, we use only the annotated
text advertisements. We implemented the local model, the MTT and the
non-projective transition-based system. The code thereof is available on

1https://www.realo.be/en
2https://github.com/bekou/ad_data

https://www.realo.be/en
https://github.com/bekou/ad_data

38 CHAPTER 2

Table 2.2: Performance of the real estate entity recognition with hyperparameter
λCRF = 10.

Entity type TP FP FN Precision Recall F1

property 3170 1912 2217 0.62 0.59 0.61
floor 2685 515 529 0.84 0.84 0.84
space 11952 2053 2003 0.85 0.86 0.86
subspace 4338 575 1181 0.88 0.79 0.83
field 2083 700 718 0.75 0.74 0.75
extra building 253 34 143 0.88 0.64 0.74

Overall 24481 5789 6791 0.81 0.78 0.80

Github.2 We also use our own CRF implementation. We measure preci-
sion, recall, and F1 on the test set, and report averaged values in a 5-fold
cross-validation setting.

2.4.2 Entity extraction

Table 2.2 presents our results for the sequence labeling subtask. We sep-
arately show the performance of our model for each entity type (see Ta-
ble 2.1). Overall, the CRF performs well with a score of F1 = 0.80. Specif-
ically, space is the best performing entity type. Note that the space entity
type is the most frequent one in our table. On the other hand, property is the
least represented class, since the ads usually mention the property type only
once. The performance of the property class is lower because it can have a
wide range of values (e.g., “helios apartments”, “milos villa”). Moreover,
the entity mentions for the space type are better separable, as expected,
since the mentions do not vary a lot (e.g., “shower”, “bedroom”).

2.4.3 Dependency parsing

The upper part of Table 2.3 lists the performance for the dependency pars-
ing subtask by itself, assuming perfect real estate entity recognition: for
this evaluation we used the gold standard provided by the annotations.
We measure the performance on the threshold-based model, the logistic
regression and the MTT scorings followed by Edmonds’ algorithm for di-
rected graphs to enforce a tree structure and the transition-based (TB) model.
Note that in the case of known entities we have that there are exactly as
many false positives as false negatives, since an incorrect edge prediction
(FP) implies that the correct one has not been predicted (FN), and vice

STRUCTURED PREDICTION ON REAL ESTATE CLASSIFIEDS 39

Table 2.3: Performance of the three approaches on the structured prediction task.
The top half are results for known entities (i.e., the gold standard as an-
notated), while the bottom half starts from the entities as found in Step (1)
of our end-to-end pipeline (λCRF = 10 and C = 1).

Model TP FP FN Precision Recall F1

kn
ow

n
en

ti
ti

es

Thresh. 15723 6365 16461 0.71 0.49 0.58
Edm. 22058 10126 10126 0.69 0.69 0.69
MTT 22361 9823 9823 0.70 0.70 0.70
TB 14816 17368 17368 0.46 0.46 0.46

fu
ll

pi
pe

lin
e Thresh. 9309 9846 22965 0.49 0.29 0.36

Edm. 12859 17417 19415 0.42 0.40 0.41
MTT 12426 17850 19848 0.41 0.39 0.40
TB 9677 19043 22507 0.34 0.30 0.32

versa, because of the enforced tree structure that has to cover all entities.
As expected, the MTT approach performs better than the others, because
the globally trained model learns directed spanning trees. Predicting the
maximum spanning tree (Edmonds’) achieves higher F1 score than simply
considering the predictions of the classifier without any structural enforce-
ment (threshold-based). The TB class of parsers is of great interest because
of their speed, state-of-the-art performance [14] and the potential to be ex-
tended towards joint models (future work), although in our comparative
study they tend to perform worse than the graph-based parsers, because
of subsequent error propagation between the transitions [13].

2.4.4 Pipeline approach

The bottom rows in Table 2.3 refer to the pipeline approach combining both
sequence labeling and dependency parsing subtasks: input entities for the
parser are not necessarily correct. Given a new real estate ad, first the
CRF identifies the entity mention token boundaries. Next the tree structure
among the extracted entities is constructed. The locally trained approach
yields marginally better performance than MTT: MTT learns spanning tree
sequences as a whole, so it is harder to connect segments that are incorrect
or incomplete. The TB system exhibits the same performance as in the case
where entities were known, but we think that incorporating neural scoring
functions [13] or using beam-search instead of using the greedy approach
will improve performance [14].

40 CHAPTER 2

2.5 Conclusion

In this paper, we presented a comparative study on the newly defined
problem of extracting the structured description of real estate properties.
We divided the problem into the sub-problems of sequence labeling and
non-projective dependency parsing since existing joint models are restricted
to non-crossing dependencies. Overall, MTT outperforms other approaches
when the entities are known while adopting a maximum spanning tree al-
gorithm using individual scored edge weights seems to be marginally bet-
ter in our pipeline.

Acknowledgments

The presented research was performed within the MALIBU project, funded
by Flanders Innovation & Entrepreneurship (VLAIO).

References

[1] K. Pace, R. Barry, O. W. Gilley, and C. Sirmans. A method for spatial-
temporal forecasting with an application to real estate prices. International
Journal of Forecasting, 16(2):229–246, April 2000. Available from: http:
//www.sciencedirect.com/science/article/pii/S0169207099000473.

[2] C. H. Nagaraja, L. D. Brown, and L. H. Zhao. An autoregressive
approach to house price modeling. The Annals of Applied Statistics,
5(1):124–149, March 2011. Available from: http://dx.doi.org/10.
1214/10-AOAS380.

[3] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. In Proceed-
ings of the Eighteenth International Conference on Machine Learning
(ICML 2001), pages 282–289, Massachusetts, USA, July 2001. Morgan
Kaufmann.

[4] B. Taskar, C. Guestrin, and D. Koller. Max-Margin Markov networks.
In Advances in neural information processing systems, volume 16,
pages 25–32. MIT Press, 2003.

[5] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support Vec-
tor Machine Learning for Interdependent and Structured Output Spaces. In
Proceedings of the Twenty-first International Conference on Machine
Learning, page 104, Alberta, Canada, July 2004. ACM. Available from:
http://doi.acm.org/10.1145/1015330.1015341.

http://www.sciencedirect.com/science/article/pii/S0169207099000473
http://www.sciencedirect.com/science/article/pii/S0169207099000473
http://dx.doi.org/10.1214/10-AOAS380
http://dx.doi.org/10.1214/10-AOAS380
http://doi.acm.org/10.1145/1015330.1015341

STRUCTURED PREDICTION ON REAL ESTATE CLASSIFIEDS 41

[6] H. Daumé III, J. Langford, and D. Marcu. Search-based structured pre-
diction. Machine Learning Journal (MLJ), 75(3):297–325, June 2009.
Available from: http://dx.doi.org/10.1007/s10994-009-5106-x.

[7] R. McDonald, F. Pereira, K. Ribarov, and J. Hajic. Non-Projective De-
pendency Parsing using Spanning Tree Algorithms. In Proceedings of
Human Language Technology Conference and Conference on Empir-
ical Methods in Natural Language Processing, pages 523–530, Van-
couver, British Columbia, Canada, October 2005. Association for
Computational Linguistics. Available from: http://www.aclweb.
org/anthology/H05-1066.

[8] R. McDonald and F. Pereira. Online Learning of Approximate De-
pendency Parsing Algorithms. In Proceedings of the 11th Confer-
ence of the European Chapter of the Association for Computational
Linguistics, pages 81–88, Trento, Italy, April 2007. Association for
Computational Linguistics. Available from: http://www.aclweb.
org/anthology/E06-1011.

[9] T. Koo, A. Globerson, X. Carreras, and M. Collins. Structured Predic-
tion Models via the Matrix-Tree Theorem. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learning (EMNLP-
CoNLL), pages 141–150, Prague, Czech Republic, June 2007. Associ-
ation for Computational Linguistics. Available from: http://www.
aclweb.org/anthology/D/D07/D07-1015.

[10] W. T. Tutte. Graph Theory. In Encyclopedia of Mathematics and its
Applications, volume 21, page 138. Cambridge University Press, 2001.

[11] J. Nivre. An efficient algorithm for projective dependency parsing. In Pro-
ceedings of the 8th International Workshop on Parsing Technologies,
pages 149–160, Nancy, France, April 2003.

[12] J. Nivre. Non-Projective Dependency Parsing in Expected Linear Time. In
Proceedings of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, pages 351–359, Suntec, Singapore,
August 2009. Association for Computational Linguistics. Available
from: http://www.aclweb.org/anthology/P/P09/P09-1040.

[13] D. Chen and C. Manning. A Fast and Accurate Dependency Parser using
Neural Networks. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 740–750,

http://dx.doi.org/10.1007/s10994-009-5106-x
http://www.aclweb.org/anthology/H05-1066
http://www.aclweb.org/anthology/H05-1066
http://www.aclweb.org/anthology/E06-1011
http://www.aclweb.org/anthology/E06-1011
http://www.aclweb.org/anthology/D/D07/D07-1015
http://www.aclweb.org/anthology/D/D07/D07-1015
http://www.aclweb.org/anthology/P/P09/P09-1040

42 CHAPTER 2

Doha, Qatar, October 2014. Association for Computational Linguis-
tics. Available from: http://www.aclweb.org/anthology/D14-1082.

[14] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev,
S. Petrov, and M. Collins. Globally Normalized Transition-Based Neural
Networks. In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers),
pages 2442–2452, Berlin, Germany, August 2016. Association for
Computational Linguistics. Available from: http://www.aclweb.
org/anthology/P16-1231.

[15] R. J. Kate and R. Mooney. Joint Entity and Relation Extraction Using
Card-Pyramid Parsing. In Proceedings of the Fourteenth Conference
on Computational Natural Language Learning, pages 203–212, Upp-
sala, Sweden, July 2010. Association for Computational Linguistics.
Available from: http://www.aclweb.org/anthology/W10-2924.

[16] Q. Li and H. Ji. Incremental Joint Extraction of Entity Mentions and
Relations. In Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers),
pages 402–412, Baltimore, Maryland, June 2014. Association for
Computational Linguistics. Available from: http://www.aclweb.
org/anthology/P14-1038.

[17] M. Miwa and Y. Sasaki. Modeling Joint Entity and Relation Ex-
traction with Table Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1858–1869, Doha, Qatar, October 2014. Association
for Computational Linguistics. Available from: http://www.aclweb.
org/anthology/D14-1200.

[18] F. Li, Y. Zhang, M. Zhang, and D. Ji. Joint Models for Extracting Ad-
verse Drug Events from Biomedical Text. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence (IJCAI
2016), pages 2838–2844, New York, USA, July 2016. IJCAI/AAAI
Press. Available from: http://www.ijcai.org/Abstract/16/403.

[19] Y.-J. Chu and T.-H. Liu. On shortest arborescence of a directed graph.
Scientia Sinica, 14:1396–1400, 1965.

[20] J. Edmonds. Optimum branchings. Journal of research of the National
Bureau of Standards, 71B(4):233–240, 1967.

[21] F. Peng and A. McCallum. Information extraction from research papers
using conditional random fields. Information processing & management,

http://www.aclweb.org/anthology/D14-1082
http://www.aclweb.org/anthology/P16-1231
http://www.aclweb.org/anthology/P16-1231
http://www.aclweb.org/anthology/W10-2924
http://www.aclweb.org/anthology/P14-1038
http://www.aclweb.org/anthology/P14-1038
http://www.aclweb.org/anthology/D14-1200
http://www.aclweb.org/anthology/D14-1200
http://www.ijcai.org/Abstract/16/403

STRUCTURED PREDICTION ON REAL ESTATE CLASSIFIEDS 43

42(4):963–979, July 2006. Available from: http://www.sciencedirect.
com/science/article/pii/S0306457305001172.

[22] H. Yamada and Y. Matsumoto. Statistical dependency analysis with sup-
port vector machines. In Proceedings of the 8th International Workshop
on Parsing Technologies, pages 195–206, Nancy, France, April 2003.

[23] B. Bohnet and J. Nivre. A Transition-Based System for Joint Part-
of-Speech Tagging and Labeled Non-Projective Dependency Parsing. In
Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language
Learning, pages 1455–1465, Jeju Island, Korea, July 2012. Association
for Computational Linguistics. Available from: http://www.aclweb.
org/anthology/D12-1133.

http://www.sciencedirect.com/science/article/pii/S0306457305001172
http://www.sciencedirect.com/science/article/pii/S0306457305001172
http://www.aclweb.org/anthology/D12-1133
http://www.aclweb.org/anthology/D12-1133

3
An attentive neural architecture for
joint segmentation and parsing and

its application to real estate ads

In this chapter we present a new joint model that is able to tackle the two core
tasks (NER and dependency parsing presented in Chapter 2) for the real estate
problem simultaneously. We alleviate issues identified on pipeline methods pre-
sented in Chapter 2 in constructing the property tree. In particular, we (i) avoid
the error propagation between the two subtasks, and (ii) exploit the interactions
between them. Note that in this chapter, we do not include transition-based sys-
tems in our experiments due to their already reported poor performance in the
real estate task (see Chapter 2). Experimental results indicate an improved per-
formance of more than three percentage points in F1 score for the newly proposed
joint model compared to the pipeline methods presented in Chapter 2. Moreover,
we exploit the usage of attention methods, to encourage our model to focus on
salient tokens, showcasing a further improvement of the proposed methodology for
our application.

? ? ?

G. Bekoulis, J. Deleu, T. Demeester and C. Develder

46 CHAPTER 3

Published in Expert Systems with Applications, Volume 102, 15 July
2018.

Abstract In processing human produced text using natural language pro-
cessing (NLP) techniques, two fundamental subtasks that arise are (i) seg-
mentation of the plain text into meaningful subunits (e.g., entities), and
(ii) dependency parsing, to establish relations between subunits. Such struc-
tural interpretation of text provides essential building blocks for upstream
expert system tasks: e.g., from interpreting textual real estate ads, one may
want to provide an accurate price estimate and/or provide selection filters
for end users looking for a particular property — which all could rely on
knowing the types and number of rooms, etc. In this paper we develop a
relatively simple and effective neural joint model that performs both seg-
mentation and dependency parsing together, instead of one after the other
as in most state-of-the-art works. We focus in particular on the real estate
ad setting, aiming to convert an ad to a structured description, which we
name property tree, comprising the tasks of (1) identifying important enti-
ties of a property (e.g., rooms) from classifieds and (2) structuring them
into a tree format. In this work, we propose a new joint model that is able
to tackle the two tasks simultaneously and construct the property tree by
(i) avoiding the error propagation that would arise from the subtasks one
after the other in a pipelined fashion, and (ii) exploiting the interactions
between the subtasks. For this purpose, we perform an extensive compar-
ative study of the pipeline methods and the new proposed joint model,
reporting an improvement of over three percentage points in the overall
edge F1 score of the property tree. Also, we propose attention methods,
to encourage our model to focus on salient tokens during the construction
of the property tree. Thus we experimentally demonstrate the usefulness of
attentive neural architectures for the proposed joint model, showcasing a
further improvement of two percentage points in edge F1 score for our ap-
plication. While the results demonstrated are for the particular real estate
setting, the model is generic in nature, and thus could be equally applied
to other expert system scenarios requiring the general tasks of both (i) de-
tecting entities (segmentation) and (ii) establishing relations among them
(dependency parsing).

3.1 Introduction

Many consumer-oriented digital applications rely on input data provided
by their target audience. For instance, real estate websites gather property
descriptions for the offered classifieds, either from realtors or from indi-

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 47

vidual sellers. In such cases, it is hard to strike the right balance between
structured and unstructured information: enforcing restrictions or struc-
ture upon the data format (i.e., predefined form) may reduce the amount
or diversity of the data, while unstructured data (i.e., raw text) may re-
quire non-trivial (i.e., hard to automate) transformation to a more struc-
tured form to be useful/practical for the intended application. In the real
estate domain, textual advertisements are an extremely useful but highly
unstructured way of representing real estate properties. However, struc-
tured descriptions of the advertisements are very helpful, e.g., for real es-
tate agencies to suggest the most appropriate sales/rentals for their cus-
tomers, while keeping human reading effort limited. For example, special
search filters, which are usually used by clients, cannot be directly applied
to textual advertisements. On the contrary, a structured representation of
the property (e.g., a tree format of the property) enables the simplification
of the unstructured textual information by applying specific filters (e.g.,
based on the number of bedrooms, number of floors, or the requirement of
having a bathroom with a toilet on the first floor), and it also benefits other
related applications such as automated price prediction [1, 2].

The new real estate structured prediction problem as defined by [3] has
as main goal to construct the tree-like representation of the property (i.e.,
the property tree) based on its natural language description. This can be ap-
proached as a relation extraction task by a pipeline of separate subtasks,
comprising (i) named entity recognition (NER) [4] and (ii) relation extrac-
tion [5]. Unlike previous studies [6, 7] on relation extraction, in the work
of [3], the relation extraction module is replaced by dependency parsing.
Indeed, the relations that together define the structure of the house should
form a tree, where entities are part-of one another (e.g., a floor is part-of
a house, a room is part-of a floor). This property tree is structurally sim-
ilar to a parse tree. Although the work of [3] is a step towards the con-
struction of the property tree, it follows a pipeline setting, which suffers
from two serious problems: (i) error propagation between the subtasks,
i.e., NER and dependency parsing, and (ii) cross-task dependencies are
not taken into account, e.g., terms indicating relations (includes, contains,
etc.) between entities that can help the NER module are neglected. Due to
the unidirectional nature of stacking the two modules (i.e., NER and de-
pendency parsing) in the pipeline model, there is no information flowing
from the dependency parsing to the NER subtask. This way, the parser
is not able to influence the predictions of the NER. Other studies on sim-
ilar tasks [6, 8] have considered the two subtasks jointly. They simultane-
ously extract entity mentions and relations between them usually by im-
plementing a beam-search on top of the first module (i.e., NER), but these

48 CHAPTER 3

methods require the manual extraction of hand-crafted features. Recently,
deep learning with neural networks has received much attention. Several
approaches [7, 9] apply long short-term memory (LSTM) recurrent neural
networks and convolutional neural networks (CNNs) to achieve state-of-
the-art performance on similar problems. Those models rely on shared pa-
rameters between the NER and relation extraction components, whereby
the NER module is typically pre-trained separately, to improve the training
effectiveness of the joint model.

In this work, we propose a new joint model to solve the real estate
structured prediction problem. Our model is able to learn the structured
prediction task without complicated feature engineering. Whereas pre-
vious studies [7, 9–11] on joint methods focus on the relation extraction
problem, we construct the property tree which comes down to solving a
dependency parsing problem, which is more constrained and hence more
difficult. Therefore, previous methods are not directly comparable to our
model and cannot be applied to our real estate task out-of-the-box. In this
work, we treat the two subtasks as one by reformulating them into a head
selection problem [12].

This paper is a follow-up work of [3]. Compared to the conference pa-
per that introduced the real estate extraction task and applied some ba-
sic state-of-the-art techniques as a first baseline solution, we now intro-
duce: (i) advanced neural models that consider the two subtasks jointly
and (ii) modifications to the dataset annotation representations as detailed
below. More specifically, the main contributions of this work are the fol-
lowing:

• We propose a new joint model that encodes the two tasks of identify-
ing entities as well as dependencies between them, as a single head
selection problem, without the need of parameter sharing or pre-
training of the first entity recognition module separately. Moreover,
instead of (i) predicting unlabeled dependencies and (ii) training an
additional classifier to predict labels for the identified heads [12], our
model already incorporates the dependency label predictions in its
scoring formula.

• We compare the proposed joint model against established pipeline
approaches and report an F1 improvement of 1.4% in the NER and
6.2% in the dependency parsing subtask, corresponding to an overall
edge F1 improvement of 3.4% in the property tree.

• Compared to our original dataset [3], we introduce two extensions to
the data: (i) we consistently assign the first mention of a particular

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 49

entity in order of appearance in the advertisement as the main men-
tion of the entity. This results in an F1 score increase of about 3% and
4% for the joint and pipeline models, respectively. (ii) We add the
equivalent relation to our annotated dataset to explicitly express that
several mentions across the ad may refer to the same entity.

• We perform extensive analysis of several attention mechanisms that
enable our LSTM-based model to focus on informative words and
phrases, reporting an improved F1 performance of about 2.1%.

The rest of the paper is structured as follows. In Section 3.2, we review
the related work. Section 3.3 defines the problem and in Section 3.4, we de-
scribe the methodology followed throughout the paper and the proposed
joint model. The experimental results are reported in Section 3.5. Finally,
Section 3.6 concludes our work.

3.2 Related work

The real estate structured prediction problem from textual advertisements
can be broken down into the sub-problems of (i) sequence labeling (iden-
tifying the core parts of the property) and (ii) non-projective dependency
parsing (connecting the identified parts into a tree-like structure) [3]. One
can address these two steps either one by one in a pipelined approach, or
simultaneously in a joint model. The pipeline approach is the most com-
monly used approach [3, 13, 14], treating the two steps independently and
propagating the output of the sequence labeling subtask (e.g., named en-
tity recognition) [15, 16] to the relation classification module [17, 18]. Joint
models are able to simultaneously extract entity mentions and relations be-
tween them [6, 7]. In this work, we propose a new joint model that is able to
recover the tree-like structure of the property and frame it as a dependency
parsing problem, given the non-projective tree structure we aim to output.
We now present related works for the sequence labeling and dependency
parsing subtasks, as well as for the joint models.

3.2.1 Sequence labeling

Structured prediction problems become challenging due to the large out-
put space. Specifically in NLP, sequence labeling (e.g., NER) is the task of
identifying the entity mention boundaries and assigning a categorical la-
bel (e.g., POS tags) for each identified entity in the sentence. A number
of different methods have been proposed, namely Hidden Markov Mod-
els (HMMs) [19], Conditional Random Fields (CRFs) [20], Maximum Mar-

50 CHAPTER 3

gin Markov Network (M3N) [21], generalized support vector machines for
structured output (SVMstruct) [22] and Search-based Structured Prediction
(SEARN) [23]. Those methods heavily rely on hand-crafted features and
an in-depth review can be found in [24]. Several variations of these mod-
els that also require manual feature engineering have been used in differ-
ent application settings (e.g., biology, social media context) and languages
(e.g., Turkish) [25–28]. Recently, deep learning with neural networks has
been succesfully applied to NER. Collobert et al. [29] proposed to use a con-
volutional neural network (CNN) followed by a CRF layer over a sequence
of word embeddings. Recurrent Neural Networks (RNNs) constitute an-
other neural network architecture that has attracted attention, due to the
state-of-the-art performance in a series of NLP tasks (e.g., translation [30],
parsing [31]). In this context, Gillick et al. [32] use a sequence-to-sequence
approach for modeling the sequence labeling task. In addition, several
variants of combinations between LSTM and CRF models have been pro-
posed [16, 33, 34] achieving state-of-the-art performance on publicly avail-
able datasets.

3.2.2 Dependency parsing

Dependency parsing is a well studied task in the NLP community, which
aims to analyze the grammatical structure of a sentence. We approach
the problem of the property tree construction as a dependency parsing task
i.e., to learn the dependency arcs of the classified. There are two well-
established ways to address the dependency parsing problem, via graph-
based and transition-based parsers.
Graph-based: In the work of [35, 36] dependency parsing requires the
search of the highest scoring maximum spanning tree in graphs for both
projective (dependencies are not allowed to cross) and non-projective (cross-
ing dependencies are allowed) trees with the Eisner algorithm [37] and the
Chu-Liu-Edmonds algorithm [38, 39] respectively. It was shown that ex-
ploiting higher-order information (e.g., siblings, grand-parental relation)
in the graph, instead of just using first-order information (i.e., parent rela-
tions) [40, 41] may yield significant improvements of the parsing accuracy
but comes at the cost of an increased model complexity. Koo et al. [42] made
an important step towards globally normalized models with hand-crafted
features, by adapting the Matrix-Tree Theorem (MTT) [43] to train over
all non-projective dependency trees. We explore an MTT approach as one
of the pipeline baselines. Similar to recent advances in neural graph-based
parsing [12, 31, 44], we use LSTMs to capture richer contextual information
compared to hand-crafted feature-based methods. Our work is conceptu-

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 51

ally related to [12], who formulated the dependency parsing problem as a
head selection problem. We go a step further in that direction, in formu-
lating the joint parsing and labeling problem in terms of selecting the most
likely combination of head and label.
Transition-based: Transition-based parsers [45, 46] replace the exact in-
ference of the graph-based parsers by an approximate but faster inference
method. The dependency parsing problem is now solved by an abstract
state machine that gradually builds up the dependency tree token by to-
ken. The goal of this kind of parsers is to find the most probable transition
sequence from an initial configuration to some terminal configuration (i.e.,
a dependency parse tree, or in our case a property tree) given a permissi-
ble set of actions (i.e., LEFT-ARC, RIGHT-ARC, SHIFT) and they are able
to handle both projective and non-projective dependencies [47, 48]. In the
simplest case (i.e., greedy inference), a classifier predicts the next transi-
tion based on the current configuration. Compared to graph-based de-
pendency parsers, transition-based parsers are able to scale better due to
the linear time complexity while graph-based complexity rises to O(n2) in
the non-projective case. Chen and Manning [49] proposed a way of learn-
ing a neural network classifier for use in a greedy, transition-based de-
pendency parser while using low-dimensional, dense word embeddings,
without the need of manually extracting features. Globally normalized
transition-based parsers [50] can be considered an extension of [49], as they
perform beam search for maintaining multiple hypotheses and introduce
global normalization with a CRF objective. Dyer et al. [51] introduced the
stack-LSTM model with push and pop operations which is able to learn
the parser transition states while maintaining a summary embedding of
its contents. Although transition-based systems are well-known for their
speed and state-of-the-art performance, we do not include them in our
study due to their already reported poor performance in the real estate
task [3] compared to graph-based parsers. We hypothesize that the limited
performance is due to the fact that in our problem instead of extracting
features from neighboring tokens (similar to the dependency parsing), the
features are local features around the non-adjacent entities. Thus, it is dif-
ficult for transition-based systems to find a complete list of transitions for
extracting the correct relations by considering non-adjacent entities. Note
that making one incorrect transition due to the use of local features around
the entities can lead to a chain of incorrect transitions.

52 CHAPTER 3

3.2.3 Joint learning

Adopting a pipeline strategy for the considered type of problems has two
main drawbacks: (i) sequence labeling errors propagate to the dependency
parsing step, e.g., an incorrectly identified part of the house (entity) could
get connected to a truly existing entity, and (ii) interactions between the
components are not taken into account (feedback between the subtasks),
e.g., modeling the relation between two potential entities may help in de-
ciding on the nature of the entities themselves. In more general relation
extraction settings, a substantial amount of work [6, 8, 52] jointly consid-
ered the two subtasks of entity recognition and relation extraction. How-
ever, all of these models make use of hand-crafted features that: (i) require
manual feature engineering, (ii) generalize poorly between various appli-
cations and (iii) may require a substantial computational cost.

Recent advances on joint models for general relation extraction con-
sider the joint task using neural network architectures like LSTMs and
CNNs [7, 9, 11]. Our work is however different from a typical relation ex-
traction setup in that we aim to model directed spanning trees, or, equiv-
alently, non-projective dependency structures. In particular, the entities
involved in a relation are not necessarily adjacent in the text since other
entities may be mentioned in between, which complicates parsing. Indeed,
in this work we focus on dependency parsing due to the difficulty of es-
tablishing the tree-like structure instead of only relation extraction (where
each entity can have arbitrary relation arcs, regardless of other entities and
their relations), which is the case for previously cited joint models. More-
over, unlike most of these works that frame the problem as a stacking of
the two components, or at least first train the NER module to recognize
the entities and then further train together with the relation classification
module, we include the NER directly inside the dependency parsing com-
ponent.

In summary, the conceptual strengths of our joint segmentation and de-
pendency parsing approach (described in detail in Section 3.4) will be the
following: compared to state-of-the-art joint models in relation extraction,
it (i) is generic in nature, without requiring any manual feature engineer-
ing, (ii) extracts a complete tree structure rather than a single binary rela-
tion instance.

3.3 Problem definition

In this section, we define the specific terms that are used in our real es-
tate structured prediction problem. We define an entity as an unambigu-

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 53

Table 3.1: Real estate entity types.

Entity type Description Examples

property The property. bungalow, apartment
floor A floor in a building. ground floor
space A room within the building. bedroom, bathroom
subspace A part of a room. shower, toilet
field An open space inside or out-

side the building.
bbq, garden

extra building An additional building
which is also part of the
property.

garden house

ous, unique part of a property with independent existence (e.g., bedroom,
kitchen, attic). An entity mention is defined as one or more sequential to-
kens (e.g., “large apartment”) that can be potentially linked to one or more
entities. An entity mention has a unique semantic meaning and refers to
a specific entity, or a set of similar entities (e.g., “six bedrooms”). An en-
tity itself is part-of another entity and can be mentioned in the text more
than once with different entity mentions. For instance, a “house” entity
could occur in the text with entity mentions “large villa” and “a newly
built house”. For the pipeline setting as presented in [3], we further clas-
sify entities into types (assign a named entity type to every word in the ad).
The task is transformed to a sequence labeling problem using BIO (Begin-
ning, Inside, Outside) encoding. The entity types are listed in Table 3.1.
For instance, in the sequence of tokens “large apartment”, B-PROPERTY is
assigned to the token “large” as the beginning of the entity, I-PROPERTY
in the token “apartment” as the inside of the entity but not the first token
within the entity and O for all the other tokens that are not entities. Un-
like previous studies [7, 9–11], for our joint model there is no need for this
type of categorical classification into labels since the two components are
treated unified as a single dependency parsing problem.

The goal of the real estate structured prediction task is to map the tex-
tual property classified into a tree-like structured representation, the so-
called property tree, as illustrated in Fig. 3.1. In the pipeline setting, this
conversion implies the detection of (i) entities of various types and (ii) the
part-of dependencies between them. For instance, the entity “living room”
is part-of the entity “large apartment”. In the joint model, each token (e.g.,
“apartment”, “living”, “bathroom”, “includes”, “with”, “3”) is examined
separately and 4 different types of relations are defined, namely part-of,
segment, skip and equivalent. The part-of relation is similar to the way that

54 CHAPTER 3

Original ad:
The property includes a large apartment with a
garage. The home has a living room, 3 spacious
bedrooms and a bathroom. The garage is equipped
with a gate and a bike wall bracket.
--
Structured representation:
property | mention=property

apartment | mention=large apartment , home
living room | mention=living room
bedrooms | mention =3 spacious bedrooms
bathroom | mention=bathroom

garage | mention=garage
gate | mention=gate
wall bracket | mention=bike wall bracket

Figure 3.1: Fictitious sample unstructured ad and corresponding structured repre-
sentation as a property tree. Indentation indicates the part-of relations
across the entities. For instance, the “apartment” is part-of the property
while the “living room” is part-of the “apartment”. On the left side (i.e.,
before the vertical bar), we denote the name of the concept for each part
of the house (e.g., apartment) while on the right side (i.e., after the verti-
cal bar), we mention the way that each concept literally exists in the text
(e.g., large apartment, home). Note that the additional “ROOT” node
on top of the tree has not been included to keep the example simpler.

it was defined in the pipeline setting but instead of examining entities, i.e.,
sequences of tokens (e.g., “living room”), we examine if a (individual) to-
ken is part-of another (individual) token (e.g., “room” is part-of the “apart-
ment”). We encode the entity identification task with the segment label and
we follow the same approach as in the part-of relationships for the joint
model. Specifically, we examine if a token is a segment of another token
(e.g., the token “room” is attached as a segment to the token “living”, “3”
is attached as a segment to the token “bedrooms” and “spacious” is also
attached as a segment to the token “bedrooms” — this way we are able to
encode the segment “3 spacious bedrooms”). By doing so, we cast the se-
quence labeling subtask to a dependency parsing problem. The tokens that
are referring to the same entity belong to the equivalent relation (“home” is
equivalent to “apartment”). Note that “home” is equivalent to “apartment”
since in this example the “apartment” and “garage” are both part-of of the
“property”. For each entity, we define the first mention in order of ap-

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 55

0
property

1
large

apartment

2
living

room

3
3 spacious

bedrooms

4
bathroom

Figure 3.2: An example graph of projective part-of dependencies.

0
property

1
large

apartment

3
living

room

4
3 spacious

bedrooms

5
bathroom

2
garage

6
gate

7
bike wall

bracket

Figure 3.3: Graph representing the part-of dependencies of Fig. 3.1. The dashed
arcs are representing the non-projective dependencies.

pearance in the text as main mention and the rest as equivalent to this main
mention. Finally, each token that does not have any of the aforementioned
types of relations has a skip relation with itself (e.g., “includes” has a skip re-
lation with “includes”), such that each token has a uniquely defined head.

Thus, we cast the structured prediction task of extracting the property
tree from the ad as a dependency parsing problem, where (i) an entity can
be part-of only one (other) entity, because the decisions are taken simulta-
neously for all part-of relations (e.g., a certain room can only be part-of a
single floor), and (ii) there are a priori no restrictions on the type of enti-
ties or tokens that can be part-of others (e.g., a room can be either part-of a
floor, or the property itself, like an apartment). It is worth mentioning that
dependency annotations for our problem exhibit a significant number of
non-projective arcs (26%) where part-of dependencies are allowed to cross
(see Fig. 3.3), meaning that entities involved in the part-of relation are non-
adjacent (i.e., interleaved by other entities). For instance, all the entities or
the tokens for the pipeline and the joint models, that are attached to the en-
tity “garage” are overlapping with the entities that are attached to the en-
tity “apartment”, making parsing even more complicated: handling only
projective dependencies as illustrated in Fig. 3.2 is an easier task. We note
that the segment dependencies do not suffer from non-projectivity, since the
tokens are always adjacent and sequential (e.g., “3 spacious bedrooms”).

3.4 Methodology

We now describe the two approaches, i.e., the pipeline model and the joint
model to construct the property tree of the textual advertisements, as illus-
trated in Fig. 3.4. For the pipeline system (Section 3.4.1), we (1) identify the
entity mentions (Section 3.4.1.1), then (2) predict the part-of dependencies

56 CHAPTER 3

(1) entity
recognition

(2) part-of RE

(3) tree
construction

...

(1+2) joint entity recognition
& part-of RE

two-step pipeline

joint model

Figure 3.4: The full structured prediction system setup.

between them (Section 3.4.1.2), and finally (3) construct the tree represen-
tation (i.e., property tree) of the textual classified (e.g., as in Fig. 3.1). In
Step (2), we apply locally or globally trained graph-based models. We rep-
resent the result of Step (2) as a graph model, and then solve Step (3) by
applying the maximum spanning tree algorithm [38, 39] for the directed
case (see [35]). We do not apply the well-known and fast transition-based
systems with hand-crafted features for non-projective dependency struc-
tures [48, 53], given the previously established poor performance thereof
in [3]. In Section 3.4.2, we describe the joint model where we perform
Steps (1) and (2) jointly. For Step (3), we apply the maximum spanning
tree algorithm [38, 39] similarly as to in the pipeline setting (Section 3.4.1).

3.4.1 Two-step pipeline

Below we revisit the pipeline approach presented in [3], which serves as
the baseline which we compare the neural models against. As mentioned
before, the pipeline model comprises two subtasks: (1) the sequence label-
ing and the (2) part-of tree construction. In the following subsections, we
describe the methods applied for both.

3.4.1.1 Sequence labeling

The first step in our pipeline approach is the sequence labeling subtask
which is similar to NER. Assuming a textual real estate classified, we (i) iden-
tify the entity mention boundaries and (ii) map each identified entity men-
tion to a categorical label, i.e., entity type. In general, for sequence labeling
tasks, it is beneficial to take into account correlations between labels of ad-
jacent tokens, i.e., consider the neighborhood, and jointly find the most
probable chain of labels for the given input sentence (Viterbi algorithm for
the most probable assignment). For instance, in our problem where we

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 57

follow the NER standard BIO encoding [54], the I-PROPERTY cannot be
followed by I-SPACE without first opening the type by B-SPACE. We use
a special case of the CRF algorithm [20, 55], namely linear chain CRFs,
which is commonly applied in the problem of sequence labeling to learn
a direct mapping from the feature space to the output space (types) where
we model label sequences jointly, instead of decoding each label indepen-
dently. A linear-chain CRF with parameters w defines a conditional prob-
ability Pw(y|x) for the sequence of labels y = y1, ..., yN given the tokens of
the text advertisement x = x1, ..., xN to be

Pw(y|x) =
1

Z(x)
exp(wTφ(x, y)), (3.1)

where Z is the normalization constant and φ is the feature function that
computes a feature vector given the advertisement and the sequence of
labels.

3.4.1.2 Part-of tree construction

The aim of the part-of tree construction subtask is to link each entity to
its parent. We approach the task as a dependency parsing problem but
instead of connecting each token to its syntactical parent, we map only the
entity set I (e.g., “large villa”, “3 spacious bedrooms”) that has already
been extracted by the sequence labeling subtask to a dependency structure
y. Assuming the entity set I = {e0, e1, ..., et} where t is the number of
identified entities, a dependency is a pair (p, c) where p ∈ I is the parent
entity and c ∈ I is the child entity. The entity e0 is the dummy root-symbol
that only appears as parent.

We will compare two approaches to predict the part-of relations: a lo-
cally trained model (LTM) scoring all candidate edges independently, ver-
sus a global model (MTT) which jointly scores all edges as a whole.

Locally trained model (LTM)

In the locally trained model (LTM), we adopt a traditional local discrim-
inative method and apply a binary classification framework [45] to learn
the part-of relation model (Step (2)), based on standard relation extraction
features such as the parent and child tokens and their types, the tokens in
between, etc. For each candidate parent-child pair, the classifier gives a
score that indicates whether it is probable for the part-of relation to hold
between them. The output scores are then used for Step (3), to construct
the final property tree. Following [35, 36], we view the entity set I as a fully
connected directed graph G = {V, E} with the entities e1, ..., et as vertices

58 CHAPTER 3

(V) in the graph G, and edges E representing the part-of relations with
the respective classifier scores as weights. One way to approach the prob-
lem is the greedy inference method where the predictions are made inde-
pendently for each parent-child pair, thus neglecting that the global target
output should form a property tree. We could adopt a threshold-based ap-
proach, i.e., keep all edges exceeding a threshold, which obviously is not
guaranteed to end up with arc dependencies that form a tree structure (i.e.,
could even contain cycles). On the other hand, we can enforce the tree
structure inside the (directed) graph by finding the maximum spanning
tree. To this end, similar to [35, 36], we apply the Edmonds’ algorithm to
search for the most probable non-projective tree structure in the weighted
fully connected graph G.

Globally trained model (MTT)

The Matrix-Tree theorem (MTT) [42] is a globally normalized statistical
method that involves the learning of directed spanning trees. Unlike the
locally trained models, MTT is able to learn tree dependency structures,
i.e., scoring parse trees for a given sentence. We use D(I) to refer to all
possible dependencies of the identified entity set I, in which each depen-
dency is represented as a tuple (h, m) in which h is the head (or parent) and
m the modifier (or child). The set of all possible dependency structures for
a given entity set I is written as T(I). The conditional distribution over all
dependency structures y ∈ T(I) can then be defined as:

P(y|I; θ) =
1

Z(I; θ)
exp

(
∑

h,m∈y
θh,m

)
(3.2)

in which the coefficients θh,m ∈ R for each dependency (h, m) form the
real-valued weight vector θ. The partition function Z(I; θ) is a normaliza-
tion factor that alas cannot be computed by brute-force, since it requires a
summation over all y ∈ T(I), containing an exponential number of pos-
sible dependency structures. However, an adaptation of the MTT allows
us the direct and efficient computation of the partition function Z(I; θ) as
the determinant det(L(θ)) where L(θ) is the Laplacian matrix of the graph.
It is worth mentioning that although MTT learns spanning tree structures
during training, at the prediction phase, it is still required to use the max-
imum spanning tree algorithm (Step (3)) [35, 36] as in the locally trained
models.

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 59

The property includes a large apartment .

LSTM LSTM LSTM LSTM LSTM LSTM LSTM

att(j,i)

score(j,i)

h0 h1 h2 h3 h4 h5 h6

h0
* h1

* h2
* h3

* h4
* h5

* h6
*

Embedding
Layer

BiLSTM
Layer

Attention
Layer

Scoring
Layer

The
skipLabel

Head includes
skip

ROOT
part-of

apartment
segment

a
skip

property
part-of

.
skip

h0
* h1

* h6
*

h0
*

h6
*:…

…

part-of

max

…

…

…

h0
*

h6
*: segment

h0
*

h6
*: equivalent

h0
*

h6
*: skip

hi h6……h0

h0
*

h6
*

a(h0,h0) a(h0,hi)
a(h0,h6)

… …

hi
*

LSTM LSTM LSTM LSTM LSTM LSTM LSTM

Figure 3.5: The architecture of the joint model.

3.4.2 Joint model

In this section, we present the new joint model sketched in Fig. 3.5, which
simultaneously predicts the entities in the sentence and the dependencies
between them, with the final goal of obtaining a tree structure, i.e., the prop-
erty tree. We pose the problem of the identification of the entity mentions
and the dependency arcs between them as a head selection problem [12].
Specifically, given as input a sentence of length N, the model outputs the
predicted parent of each token of the advertisement and the most likely
dependency label between them. We begin by describing how the tokens
are represented in the model, i.e., with fixed pre-trained embeddings (Sec-
tion 3.4.2.1), which form the input to an LSTM layer (Section 3.4.2.2). The
LSTM outputs are used as input to the entity and dependency scoring layer
(Section 3.4.2.3). As an extension of this model, we propose the use of var-
ious attention layers in between the LSTM and scoring layer, to encourage
the model to focus on salient information, as described in Section 3.4.2.4.
The final output of the joint model still is not guaranteed to form a tree
structure. Therefore, we still apply Edmonds’ algorithm (i.e., Step (3) from
the pipeline approach), described in Section 3.4.2.5.

3.4.2.1 Embedding Layer

The embedding layer maps each token of the input sequence x1, ..., xN
of the considered advertisement to a low-dimensional vector space. We

60 CHAPTER 3

obtain the word-level embeddings by training the Skip-Gram word2vec
model [56] on a large (non-annotated) collection of property advertise-
ments. We add a symbol x0 in front of the N-length input sequence, which
will act as the root of the property tree, and is represented with an all-zeros
vector in the embedding layer.

3.4.2.2 Bidirectional LSTM encoding layer

Many neural network architectures have been proposed in literature, e.g.,
LSTMs [57], CNNs [58], Echo State Networks [59], or Stochastic Configu-
ration Networks [60], to name only a few. Many others can be found in ref-
erence works on the topic [61, 62]. In this work, we use RNNs which have
been proven to be particularly effective in a number of NLP tasks [7, 16, 30].
Indeed, RNNs are a common and reasonable choice to model sequential
data and inherently able to cope with varying sequence lengths. Yet, plain
vanilla RNNs tend to suffer from vanishing and/or exploding gradient
problems and are hence not successful in capturing long-term dependen-
cies [63, 64]. LSTMs are a more advanced kind of RNNs, which have been
successfully applied in several tasks to capture long-term dependencies, as
they are able to effectively overcome the vanishing gradient problem. For
many NLP tasks, it is crucial to represent each word in its own context, i.e.,
to consider both past (left) and future (right) neighboring information. An
effective solution to achieve this is using a bidirectional LSTM (BiLSTM).
The basic idea is to encode each sequence from left to right (forward) and
from right to left (backward). This way, there is one hidden state which
represents the past information and another one for the future informa-
tion. The high-level formulation of an LSTM is:

hi, ci = LSTM(wi, hi−1, ci−1), i = 0, ..., N (3.3)

where in our setup wi ∈ Rd̃ is the word embedding for token xi, and with
the input and states for the root symbol x0 initialized as zero vectors. Fur-
ther, hi ∈ Rd and ci ∈ Rd respectively are the output and cell state for the
ith position, where d is the hidden state size of the LSTM. Note that we
chose the word embedding size the same as the LSTM hidden state size,
or d̃ = d. The outputs from left to right (forward) are written as ~hi and
the outputs from the backwards direction as ~hi. The two LSTMs’ outputs
at position i are concatenated to form the output hi at that position of the
BiLSTM:

hi = [~hi; ~hi], i = 0, ..., N (3.4)

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 61

3.4.2.3 Joint learning as head selection

In this subsection, we describe the joint learning task (i.e., identifying en-
tities and predicting dependencies between them), which we formulate as
a head selection problem [12]. Indeed, each word xi should have a unique
head (parent) — while it can have multiple dependent words — since the
final output should form the property tree. Unlike the standard head selec-
tion dependency parsing framework [12], we predict the head yi of each
word xi and the relation ci between them jointly, instead of first obtaining
binary predictions for unlabeled dependencies, followed by an additional
classifier to predict the labels.

Given a text advertisement as a token sequence x = x0, x1, ..., xN where
x0 is the dummy root symbol, and a set C = {part-of, segment, equivalent, skip}
of predefined labels (as defined in Section 3.3), we aim to find for each to-
ken xi, i ∈ {0, ..., N} the most probable head xj, j ∈ {0, ..., N} and the most
probable corresponding label c ∈ C. For convenience, we order the labels
c ∈ C and identify them as ck, k ∈ {0, ..., 3}. We model the joint probability
of token xj to be the head of xi with ck the relation between them, using a
softmax:

P(head = xj, label = ck|xi) =
exp(score(hj, hi, ck))

∑ j̃,k̃ exp(score(h j̃, hi, ck̃)
(3.5)

where hi and hj are the BiLSTM encodings for words xi and xj, respectively.
For the scoring formula score(hj, hi, ck) we use a neural network layer that
computes the relative score between position i and j for a specific label ck
as follows:

score(hj, hi, ck) = VT
k tanh(Ukhj + Wkhi + bk) (3.6)

with trainable parameters Vk ∈ Rl , Uk ∈ Rl×2d, Wk ∈ Rl×2d, bk ∈ Rl , and
l the layer width. As detailed in Section 3.5.1, we set l to be smaller than
2d, similar to [65] due to the fact that training on superfluous information
reduces the parsing speed and increases tendency towards overfitting. We
train our model by minimizing the cross-entropy loss L, written for the
considered training instance as:

L =
N

∑
i=0
− log P(head = yi, label = ci|xi) (3.7)

where yi ∈ x and ci ∈ C are the ground truth head and label of xi, respec-
tively. After training, we follow a greedy inference approach and for each
token, we simultaneously keep the highest scoring head ŷi and label ĉi for

62 CHAPTER 3

xi based on their estimated joint probability:

(ŷi, ĉi) = argmax
xj∈x,ck∈C

P(head = xj, label = ck|xi) (3.8)

The predictions (ŷi, ĉi) are made independently for each position i, neglect-
ing that the final structure should be a tree. Nonetheless, as demonstrated
in Section 3.5.2, the highest scoring neural models are still able to come up
with a tree structure for 78% of the ads. In order to ensure a tree output in
all cases, however, we apply Edmonds’ algorithm on the output.

3.4.2.4 Attention Layer

The attention mechanism in our structured prediction problem aims to im-
prove the model performance by focusing on information that is relevant
to the prediction of the most probable head for each token. As attention
vector, we construct the new context vector h∗i as a weighted average of
the BiLSTM outputs

h∗j =
N

∑
i=0

a(hj, hi)hi (3.9)

in which the coefficients a(hj, hi), also called the attention weights, are ob-
tained as follows:

a(hj, hi) =
exp(att(hj, hi))

∑N
ĩ=0 exp(att(hj, hĩ))

. (3.10)

The attention function att(hj, hi) is designed to measure some form of com-
patibility between the representation hi for xi and hj for xj, and the atten-
tion weights a(hj, hi) are obtained from these scores by normalization using
a softmax function. In the following, we will describe in detail the various
attention models that we tested with our joint model.

Commonly used attention mechanisms

Three common attention mechanisms are listed in eqs. (3.11) to (3.13): the
additive [66], bilinear, and multiplicative attention models [67], which have
been extensively used in machine translation. Given the representations hi
and hj for tokens xi and xj, we compute the attention scores as follows:

attadditive(hj, hi) = Va tanh(Uahj + Wahi + ba) (3.11)

attbilinear(hj, hi) = hT
j Wbilhi (3.12)

attmultiplicative(hj, hi) = hT
j hi (3.13)

where Va ∈ Rl , Ua, Wa ∈ Rl×2d, Wbil ∈ R2d×2d and ba ∈ Rl are learnable
parameters of the model.

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 63

Biaffine attention

We use the biaffine attention model [65] which has been recently applied
to dependency parsing and is a modification of the neural graph-based ap-
proach that was proposed by [31]. In this model, Dozat et al. [65] tried to
reduce the dimensionality of the recurrent state of the LSTMs by applying
a such neural network layer on top of them. This idea is based on the fact
that there is redundant information in every hidden state that (i) reduces
parsing speed and (ii) increases the risk of overfitting. To address these is-
sues, they reduce the dimensionality and apply a nonlinearity afterwards.
The deep bilinear attention mechanism is defined as follows:

hdep
i = Vdep tanh(Udephi + bdep) (3.14)

hhead
j = Vhead tanh(Uheadhj + bhead) (3.15)

attbiaffine(hhead
j , hdep

i) = (hhead
j)TWbilh

dep
i + Bhhead

j (3.16)

where Udep, Uhead ∈ Rl×2d, Vdep, Vhead ∈ Rp×l , Wbil ∈ Rp×p, B ∈ Rp and
bdep, bhead ∈ Rl .

Tensor attention

This section introduces the Neural Tensor Network [68] that has been used
as a scoring formula applied for relation classification between entities.
The task can be described as link prediction between entities in an exist-
ing network of relationships. We apply the tensor scoring formula as if
tokens are entities, by the following function:

atttensor(hj, hi) = Ut tanh(hT
j Wthi + Vt(hj + hi) + bt) (3.17)

where Wt ∈ R2d×l×2d, Vt ∈ Rl×2d, Ut ∈ Rl and bt ∈ Rl .

Edge attention

In the edge attention model, we are inspired by [69], which applies neural
message passing in chemical structures. Assuming that words are nodes
inside the graph and the message flows from node xi to xj, we define the
edge representation to be:

edge(hj, hi) = tanh(Uehj + Wehi + be) (3.18)

The edge attention formula is computed as:

attedge(hj, hi) =
1
N

Asrc

N

∑̃
i=0

edge(hj, hĩ) + Adst

N

∑̃
j=0

edge(h j̃, hi)

 (3.19)

64 CHAPTER 3

where Ue, We ∈ Rl×2d, Asrc, Adst ∈ R2d×l and be ∈ Rl . The source and
destination matrices respectively encode information for the start to the
end node, in the directed edge. Running the edge attention model for sev-
eral times can be achieved by stacking the edge attention layer multiple
times. This is known as message passing phase and we can run it for sev-
eral (T > 1) time steps to obtain more informative edge representations.
We hypothesize that this model could potentially capture relationships be-
tween distant entities in a given sentence. This is because it has been de-
signed to mimic traditional graph-based models presented in Chapter 2.

3.4.2.5 Tree construction step: Edmonds’ algorithm

At decoding time, greedy inference is not guaranteed to end up with arc
dependencies that form a tree structure and the classification decision may
contain cycles. In this case, the output can be post-processed with a max-
imum spanning tree algorithm (as the third step in Fig. 3.4). We construct
the fully connected directed graph G = (V, E) where the vertices V are
the tokens of the advertisement (that are not predicted as skips) and the
dummy root symbol, E contains the edges representing the highest scor-
ing relation (e.g., part-of, segment, equivalent) with the respective cross en-
tropy scores serving as weights. Since G is a directed graph, s(xi, xj) is
not necessarily equal to s(xj, xi). Similar to [35], we employ Edmonds’
maximum spanning tree algorithm for directed graphs [38, 39] to build a
non-projective parser. Indeed, in our setting, we have a significant num-
ber (26% in the dataset used for experiments, see further) of non-adjacent
part-of and equivalent relations (non-projective). It is worth noting that in
the case of segment relations, the words involved are not interleaved by
other tokens and are always adjacent. We apply Edmonds’ algorithm to
every graph which is constructed to get the highest scoring graph struc-
ture, even in the cases where a tree is already formed by greedy infer-
ence. For skips, we consider the predictions as obtained from the greedy
approach and we do not include them in the fully connected weighted
graph, since Edmonds’ complexity is O(n2) for dense graphs and might
lead to slow decoding time.

3.5 Results and discussion

In this section, we present the experimental results of our study. We de-
scribe the dataset, the setup of the experiments and we compare the results
of the methods analysed in the previous sections.

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 65

3.5.1 Experimental setup

Our dataset consists of a large collection (i.e., 887,599) of Dutch property
advertisements from real estate agency websites. From this large dataset,
a sub-collection of 2,318 classifieds have been manually annotated by 3
trained human annotators (1 annotation per ad, 773 ads per annotator).
The annotations follow the format of the property tree that is described in
detail in Section 3.3 and is illustrated in Fig. 3.1. The dataset is available for
research purposes, see our Github codebase.1 In the experiments, we use
only the annotated text advertisements for the pipeline setting, i.e., LTM
(locally trained model), MTT (globally trained model). In the case of the
neural network approach, we train the embeddings on the large collection
by using the word2vec model [56] whereas in the joint learning, we use
only the annotated documents, similar to the pipeline approach. The code
of the LTM and the MTT hand-crafted systems is available on Github.1

We also use our own CRF implementation. The code for the joint model
has been developed in Python with the Tensorflow machine learning li-
brary [70] and will be made public as well. For the evaluation, we use 70%
for training, 15% for validation and 15% as test set. We measure the perfor-
mance by computing the F1 score on the test set. The accuracy metric can
be misleading in our case since we have to deal with imbalanced data (the
skip label is over-represented). We only report numbers on the structured
classes, i.e., segment and part-of since the other dependencies (skip, equiva-
lent) are auxiliary in the joint models and do not directly contribute to the
construction of the actual property tree. For the overall F1, we are again
only considering the structured classes. Finally, we report the number of
property trees (which shows how likely our model is to produce trees with-
out applying Edmonds’ algorithm, i.e., by greedy inference alone) for all
the models before applying Edmonds’ algorithm that guarantees the tree
structure of the predictions.

For the pipeline models, we train the CRF with regularization para-
meter λCRF = 10 and the LTM and MTT with C = 1 based on the best
hyperparameters on the validation set. As binary classifier, we use logistic
regression. For the joint model, we train 128-dimensional word2vec em-
beddings on a collection of 887k advertisements. In general, using larger
embeddings dimensions (e.g., 300), does not affect the performance of our
models. We consistently used single-layer LSTMs through our experiments
to keep our model relatively simple and to evaluate the various attention
methods on top of that. We have also reported results on the joint model
using a two-layer stacked LSTM joint model, although it needs a higher

1https://github.com/bekou/ad_data

https://github.com/bekou/ad_data

66 CHAPTER 3

computation time compared to a single-layer LSTM with an attention layer
on top. The hidden size of the LSTMs is d = 128 and the size of the neural
network used in the scoring and the attention layer is fixed to l = 32. The
optimization algorithm used is Adam [71] with a learning rate of 10−3. To
reduce the effect of overfitting, we regularize our model using the dropout
method [72]. We fix the dropout rate on the input of the LSTM layer to 0.5
to obtain significant improvements (∼1%-2% F1 score increase, depending
on the model). For the two-layer LSTM, we fix the dropout rate to 0.3 in
each of the input layers since this leads to largest performance increase on
the validation set. We have also explored gradient clipping without fur-
ther improvement on our results. In the joint model setting, we follow the
evaluation strategy of early stopping [73, 74] based on the performance of
the validation set. In most of the experiments, we obtain the best hyperpa-
rameters after ∼60 epochs.

3.5.2 Comparison of the pipeline and the joint model

One of the main contributions of our study is the comparison of the pipeline
approach and the proposed joint model. We formulated the problem of
identifying the entities (i.e., segments) and predicting the dependencies be-
tween them (i.e., construction of the property tree) as a joint model. Our
neural model, unlike recent studies [7, 9] on joint models that use LSTMs
to handle similar tasks, does not need two components to model the prob-
lem (i.e., NER and dependency parsing). To the best of our knowledge,
our study is the first that formulates the task in an actual joint setting with-
out the need to pre-train the sequence labeling component or for parameter
sharing between them, since we use only one component for both subtasks.
In Table 3.2, we present the results of the pipeline model (hand-crafted)
and the proposed joint model (LSTM). The improvement of the joint model
over the pipeline is unambiguous, i.e., 3.4% overall F1 score difference be-
tween MTT (highest scoring pipeline model) and LSTM+E (LSTM model
with Edmonds’ algorithm). Note that in an additional experiment (not
shown in Table 3.2), we observe that even by using randomly initialized
word embeddings (i.e., without the use of pre-trained word embeddings),
the joint model outperforms the pipeline methods by a large margin (i.e.,
the difference between the joint models with and without pre-trained word
embeddings is about 1% F1). This result indicates that the superiority of the
joint model over the pipeline methods is due to the joint architecture and
does not rely on transferring knowledge from a large corpus. An addi-
tional increase of ∼2.3% is achieved when we consider two-layer LSTMs
(2xLSTM+E) for our joint model. All results in Table 3.2, except for the

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 67

LSTM, are presented using Edmonds’ algorithm on top, to construct the
property tree. Examining each label separately, we observe that the original
LSTM+E model (73.7%) performs better by 1.4% in entity segmentation
than the CRF (72.3%). The LSTM model achieves better performance in
the entity recognition task since it has to learn the two subtasks simulta-
neously resulting in interactions between the components (i.e., NER and
dependency parser). This way, the decisions for the entity recognition
can benefit from predictions that are made for the part-of relations. Con-
cerning the part-of dependencies, we note that the LSTMs outperform the
hand-crafted approaches by 6.2%. Also, the number of valid trees that are
constructed before applying Edmonds’ algorithm is almost twice as high
for the LSTM models. Stacking two-layer LSTMs results in an additional
∼1% improvement in the segmentation task and ∼3% in the part-of rela-
tions. The greedy inference for the hand-crafted methods does not pro-
duce well-formed trees, meaning that post-processing with Edmonds’ al-
gorithm (enforce tree structure) is expected to increase the performance of
the hand-crafted models compared to the LSTM model performance. In-
deed, the performance of the feature based hand-crafted models (i.e., LTM
and MTT) without Edmonds’ algorithm on top is not reported in Table 3.2
due to their poor performance in our task (i.e., ∼60% overall F1 and ∼51%
for part-of), but after post-processing with Edmonds’ algorithm the perfor-
mance significantly increases (i.e., ∼65%). On the other hand, applying
Edmonds’ algorithm on the LSTM model leads to marginally decreased
performance (∼0.2%) compared to the original LSTM model, probably in-
dicating that enforcing structural constraints is not beneficial for a model
that clearly has the ability to form valid tree structures during greedy in-
ference. Although one might be tempted not to enforce the tree structure
(post-process with Edmonds’), due to the nature of our problem, we have
to enforce tree constraints in all of the models.

3.5.3 Comparison of the joint and the attention model

After having established the superior performance of the neural approach
using LSTMs over the more traditional (LTM and MTT) methods based
on hand-crafted features, we now discuss further improvements using at-
tentive models. The attention mechanisms are designed to encourage the
joint model to focus on informative tokens. We exploited several attention
mechanisms as presented in Section 3.4.2.4. Table 3.2 shows the perfor-
mance of the various models. Overall, the attention models are performing
better in terms of overall F1 score compared to the original joint model with
Edmonds’ algorithm on top. Although the performance of the Biaffine and

68 CHAPTER 3

Table 3.2: Performance of the three approaches on the structured prediction task.
The top rows are for the pipeline approach, i.e., hand-crafted features. The
next block of results presents the results for the neural joint model based
on LSTMs. The bottom block contains results of the joint models aug-
mented with several attentive architectures. Edmonds’ algorithm is ap-
plied in all of the models to retain the tree structure, except for the LSTM
joint model. The LSTM+E is the LSTM model with Edmonds’ algorithm
included. The 2xLSTM+E is the same joint model but it simply uses a
stack of two LSTM layers. In the experiments with attention, we use a
one-stack LSTM. The rightmost column is the percentage of the ads that
are valid trees before applying Edmonds’ (i.e., Step (3) of Fig. 3.4), show-
ing the ability of the model to form trees during greedy inference. In the
Edgei models, the number i stands for the number of times that we have
run the message passing phase.

Precision Recall F1 (%) Trees
Model segment part-of segment part-of segment part-of Overall (% of ads)

H
an

d-
cr

af
te

d LTM 73.77 60.53 70.98 60.40 72.35 60.47 64.76 37.18
MTT 73.77 61.15 70.98 61.01 72.35 61.08 65.15 43.23

LS
TM

LSTM 70.24 65.23 77.73 70.32 73.80 67.68 68.82 68.30
LSTM+E 70.18 63.92 77.77 71.08 73.78 67.31 68.57 68.30

2xLSTM+E 73.91 69.88 75.78 71.22 74.83 70.54 70.90 78.09

A
tt

en
ti

ve
LS

TM

Additive 72.97 65.71 76.45 70.90 74.67 68.21 69.46 74.35
Bilinear 70.25 66.34 79.96 72.53 74.79 69.29 70.20 72.62

Multiplicative 71.12 66.40 77.81 71.26 74.31 68.75 69.70 72.91
Biaffine 70.01 64.67 78.32 71.04 73.93 67.71 68.75 74.06
Tensor 71.53 64.68 76.17 70.79 73.78 67.60 68.68 69.16
Edge1 71.56 67.46 78.24 71.31 74.75 69.33 70.08 70.32
Edge2 72.03 66.09 75.35 70.99 73.65 68.46 69.12 73.48
Edge3 71.74 67.69 78.44 73.00 74.94 70.25 70.70 78.96

the Tensor models is limited compared to the improvement of the other
attentive models, we focus on: (i) the Biaffine model since it achieved
state-of-the-art performance on the dependency parsing task and (ii) the
Tensor model because we were expecting that it would perform similarly
to the Bilinear model (it has a bilinear tensor layer). Despite its simplicity,
the Bilinear model is the second best performing attentive model in Ta-
ble 3.2 in terms of overall F1 score. Edge3 (70.7% overall F1 score) achieves
better results than the other attention mechanisms in the entity recognition
and in the dependency parsing tasks. We observe that running the mes-
sage passing step multiple times in the Edge model, gives an increasing
trend in the number of valid trees that were constructed before applying
the maximum spanning tree algorithm. This is not surprising since we
expect that running the message passing phase multiple times leads to im-
proved edge representations. The maximum number of trees without post-
processing by Edmonds’ is attained when we run the message passing for 3
times whereas further increasing the number beyond 3 (e.g., 4) appears no
longer beneficial. Stacking a second LSTM layer on top of the joint model

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 69

(2xLSTM+E) marginally improves the performance by 0.2% compared to
the Edge3 attention model. But adding a second LSTM layer comes with
the additional cost of an increased computation time compared to the joint
models with the attention layers on top. This illustrates that: (i) there might
be some room for marginally improving the attention models even further,
and (ii) we do not have to worry about the quadratic nature of our ap-
proach since in terms of speed the attentive models are able to surpass the
two-layer LSTMs. The sequential processing of the LSTMs might be the
reason that slows down the computation time for the 2xLSTM over the rest
of the attentive models. Specifically, on an Intel(R) Xeon(R) CPU E5-2650
v2 @ 2.60GHz processor, the best performing model (i.e., Edge3) takes ∼2
minutes per epoch while in the 2xLSTM case, it takes∼2.5 minutes leading
to a slowdown of ∼25%. The percentage of the ads that are valid trees is
1% better in the Edge3 over the two-layer LSTM showcasing the ability of
the Edge model to form more valid trees during greedy inference.

3.5.4 Discussion

In this section, we discuss some additional aspects of our problem and the
approaches that we follow to handle them. As we mentioned before, a sin-
gle entity can be present in the text with multiple mentions. This brings
an extra difficulty to our task. For instance, in the example of Fig. 3.1, the
entity “large apartment” is expressed in the ad with the mentions “large
apartment” and “home”. Hence it is confusing to which mention the other
entities should be attached to. One way would be to attach them to both
and then eliminate one of the connections using Edmonds’ spanning tree
algorithm, which is the approach adopted in [3]. The problematic issue
with this approach is that the spanning tree algorithm would randomly re-
move all mentions but one, possibly resulting in uncertain outcomes. To
avoid this problem, we now use as the main mention for an entity the first
mention in order of appearance in the text (e.g., “large apartment” in our
example) and the remaining mentions (e.g., “home”) are attached as equiv-
alent mentions to the main one. Usually, the most informative mention for
an entity is the one that appears first, because we again refer to an entity
mentioned before, often with a shorter description. Following our intu-
ition, the neural model increases its overall performance by ∼3% (from
66% to 69% and more than 5% in the part-of relation) and the pipeline ap-
proaches by almost 4% (from 61%, reported in [3] to 65% and more than
5% in the part-of relation).

We also experimented with introducing the equivalent relations. Al-
though it is a strongly under-represented class in the dataset and the model

70 CHAPTER 3

performs poorly for this label (an equivalent edge F1 score of 10%), intro-
ducing the equivalent label is the natural way of modeling our problem
(i.e., assigning each additional mention as equivalent to the main mention).
We find out that introducing this type of relation leads to a slight decrease
(∼1%) in the part-of and a marginal increase (∼0.3%) in the segment rela-
tions which are the main relations while retaining the nature of our prob-
lem. In the pipeline approach, it results in an 9% drop in the F1 score of the
part-of relation. This is the reason that the results as presented in Table 3.2
do not consider the equivalent relation for the hand-crafted model to make
a fair comparison in the structured classes.

We believe our experimental comparison of the various architectural
model variations provides useful findings for practitioners. Specifically,
for applications requiring both segmentation (entity recognition) and de-
pendency parsing (structured prediction), our findings can be qualitatively
summarized as follows: (i) joint modeling is the most appropriate ap-
proach since it reduces error propagation between the components, (ii) the
LSTM model is much more effective (than models relying on hand-crafted
features) because it automatically extracts informative features from the
raw text, (iii) attentive models are proven effective because they encour-
age the model to focus on salient tokens, (iv) the edge attention model
leads to an improved performance since it better encodes the information
flow between the entities by using graph representations, and (v) stack-
ing a second LSTM marginally increases the performance, suggesting that
there might be some room for slight improvement of the attention models
by adding LSTM layers.

Finally, we point out how exactly our model relates to state-of-the-art in
the field. Our joint model is able to both extract entity mentions (i.e., per-
form segmentation) and do dependency parsing, which we demonstrate
on the real estate problem. Previous studies [6, 8, 52] that jointly considered
the two subtasks (i.e., segmentation and relation extraction): (i) require
manual feature engineering and (ii) generalize poorly between various ap-
plications. On the other hand, in our work, we rely on neural network
methods (i.e., LSTMs) to automatically extract features from the real estate
textual descriptions and perform the two tasks jointly. Although there are
other methods which use neural network architectures [7, 9, 11] that focus
on the relation extraction problem, our work is different in that we aim
to model directed spanning trees and thus to solve the dependency pars-
ing problem which is more constrained and difficult (than extracting single
instances of binary relations). Moreover, the cited methods require either
parameter sharing or pre-training of the segmentation module, which com-
plicates learning. Therefore, cited methods are not directly comparable to

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 71

our model and cannot be applied to our real estate task out-of-the-box.
However, our model’s main limitation is the quadratic scoring layer that
increases the time complexity of the segmentation task from linear (which
is the complexity of a conditional random field, CRF) to O(n2). As a result,
it sacrifices standard linear complexity of the segmentation task, in order
to reduce the error propagation between the subtasks and thus perform
learning in a joint, end-to-end differentiable, setting.

3.6 Conclusions

In this paper, we proposed an LSTM-based neural model to jointly per-
form segmentation and dependency parsing. We apply it to a real estate use
case processing textual ads, thus (1) identifying important entities of the
property (e.g., rooms) and (2) structuring them into a tree format based on
the natural language description of the property. We compared our model
with the traditional pipeline approaches that have been adapted to our task
and we reported an improvement of 3.4% overall edge F1 score. Moreover,
we experimented with different attentive architectures and stacking of a
second LSTM layer over our basic joint model. The results indicate that ex-
ploiting attention mechanisms that encourage our model to focus on infor-
mative tokens, improves the model performance (increase of overall edge
F1 score with∼2.1%) and increases the ability to form valid trees in the pre-
diction phase (4% to 10% more valid trees for the two best scoring attention
mechanisms) before applying the maximum spanning tree algorithm.

The contribution of this study to the research in expert and intelligent
systems is three-fold: (i) we introduce a generic joint model, simultane-
ously solving both subtasks of segmentation (i.e., entity extraction) and de-
pendency parsing (i.e., extracting relationships among entities), that unlike
previous work in the field does not rely on manually engineered features,
(ii) in particular for the real estate domain, extracting a structured property
tree from a textual ad, we refine the annotations and additionally propose
attention models, compared to initial work on this application, and finally
(iii) we demonstrate the effectiveness of our proposed generic joint model
with extensive experiments (see aforementioned F1 improvement of 2.1%).
Despite the experimental focus on the real estate domain, we stress that
the model is generic in nature, and could be equally applied to other ex-
pert system scenarios requiring the general tasks of both detecting entities
(segmentation) and establishing relations among them (dependency parsing).
We furthermore note that our model, rather than focusing on extracting a
single binary relation from a sentence (as in traditional relation extraction
settings), produces a complete tree structure.

72 CHAPTER 3

Future work can evaluate the value of our joint model we introduced
in other specific application domains (e.g., biology, medicine, news) for ex-
pert and intelligent systems. For example, the method can be evaluated for
entity recognition and binary relation extraction (the ACE 04 and ACE 05
datasets; see [7]) or in adverse drug effects from biomedical texts (see [10]).
In terms of model extensions and improvements, one research issue is to
address the time complexity of the NER part by modifying the quadratic
scoring layer for this component. An additional research direction is to in-
vestigate different loss functions for the NER component (e.g., adopting a
conditional random field (CRF) approach), since this has been proven ef-
fective in the NER task on its own [16]. Moreover, the (low) performance
of our model on finding coreference mentions (i.e., equivalent relation) can
be improved by removing the equivalent relation from the quadratic scor-
ing function and identifying coreference clusters using end-to-end corefer-
ence resolution models [75] in a multi-task learning setting. Especially, for
the real-estate case that the documents are really long and thus the entity
mentions are non-adjacent, the coreference performance can be further im-
proved by using multi-hop coreference models (e.g., [76]) to create globally
consistent coreference clusters. A final extension we envision is to enable
multi-label classification of relations among entity pairs.

Acknowledgments

The presented research was partly performed within the MALIBU project,
funded by Flanders Innovation & Entrepreneurship (VLAIO) contract num-
ber IWT 150630.

References

[1] K. Pace, R. Barry, O. W. Gilley, and C. Sirmans. A method for spatial-
temporal forecasting with an application to real estate prices. Interna-
tional Journal of Forecasting, 16(2):229–246, 2000. doi:10.1016/S0169-
2070(99)00047-3.

[2] C. H. Nagaraja, L. D. Brown, and L. H. Zhao. An autoregressive approach
to house price modeling. The Annals of Applied Statistics, 5(1):124–149,
2011. doi:10.1214/10-AOAS380.

[3] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. Reconstructing
the house from the ad: Structured prediction on real estate classifieds. In
Proceedings of the 15th Conference of the European Chapter of the

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 73

Association for Computational Linguistics: (Volume 2, Short Papers),
pages 274–279, Valencia, Spain, 3–7 Apr. 2017.

[4] D. Nadeau and S. Sekine. A survey of named entity recognition
and classification. Lingvisticae Investigationes, 30(1):3–26, 2007.
doi:10.1075/li.30.1.03nad.

[5] N. Bach and S. Badaskar. A review of relation extraction. Literature
review for Language and Statistics II, 2007.

[6] Q. Li and H. Ji. Incremental Joint Extraction of Entity Mentions and Rela-
tions. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 402–
412, Baltimore, USA, 23–25 Jun. 2014.

[7] M. Miwa and M. Bansal. End-to-End Relation Extraction using LSTMs
on Sequences and Tree Structures. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1105–1116, Berlin, Germany, 7–12 Aug. 2016.

[8] R. J. Kate and R. Mooney. Joint Entity and Relation Extraction Using
Card-Pyramid Parsing. In Proceedings of the 14th Conference on Com-
putational Natural Language Learning, pages 203–212, Uppsala, Swe-
den, 15–16 Jul. 2010. Association for Computational Linguistics.

[9] S. Zheng, Y. Hao, D. Lu, H. Bao, J. Xu, H. Hao, and B. Xu. Joint entity
and relation extraction based on a hybrid neural network. Neurocomput-
ing, 257:59–66, 2017. doi:10.1016/j.neucom.2016.12.075.

[10] F. Li, Y. Zhang, M. Zhang, and D. Ji. Joint Models for Extracting Adverse
Drug Events from Biomedical Text. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, pages 2838–
2844, New York, USA, 9–15 Jul. 2016. IJCAI/AAAI Press.

[11] F. Li, M. Zhang, G. Fu, and D. Ji. A neural joint model for entity and
relation extraction from biomedical text. BMC Bioinformatics, 18(1):1–11,
2017. doi:10.1186/s12859-017-1609-9.

[12] X. Zhang, J. Cheng, and M. Lapata. Dependency Parsing as Head Selec-
tion. In Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: (Volume 1, Long
Papers), pages 665–676, Valencia, Spain, 3–7 Apr. 2017.

[13] K. Fundel, R. Küffner, and R. Zimmer. RelEx-Relation extraction
using dependency parse trees. Bioinformatics, 23(3):365–371, 2007.
doi:10.1093/bioinformatics/btl616.

74 CHAPTER 3

[14] H. Gurulingappa, A. Mateen-Rajpu, and L. Toldo. Extraction of poten-
tial adverse drug events from medical case reports. Journal of Biomedical
Semantics, 3(1):1–15, 2012. doi:10.1186/2041-1480-3-15.

[15] J. Chiu and E. Nichols. Named Entity Recognition with Bidirectional
LSTM-CNNs. Transactions of the Association for Computational Lin-
guistics, 4:357–370, 2016.

[16] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and
C. Dyer. Neural Architectures for Named Entity Recognition. In Proceed-
ings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies, pages 260–270, San Diego, California, 12–17 Jun. 2016.

[17] C. dos Santos, B. Xiang, and B. Zhou. Classifying Relations by Ranking
with Convolutional Neural Networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 626–634, Beijing, China, 26–31 Jul. 2015.

[18] Y. Xu, L. Mou, G. Li, Y. Chen, H. Peng, and Z. Jin. Classifying Relations
via Long Short Term Memory Networks along Shortest Dependency Paths.
In Proceedings of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1785–1794, Lisbon, Portugal, 17–21
Sept. 2015. Association for Computational Linguistics.

[19] L. Rabiner and B. Juang. An introduction to hidden Markov models. IEEE
ASSP Magazine, 3(1):4–16, 1986. doi:10.1109/MASSP.1986.1165342.

[20] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. In Proceedings
of the 18th International Conference on Machine Learning, pages 282–
289, San Francisco, USA, 28 Jun.–1 Jul. 2001. Morgan Kaufmann.

[21] B. Taskar, C. Guestrin, and D. Koller. Max-Margin Markov networks. In
Proceedings of the 16th International Conference on Neural Informa-
tion Processing Systems, pages 25–32. MIT Press, Bangkok, Thailand,
1–5 Dec. 2003.

[22] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Sup-
port Vector Machine Learning for Interdependent and Structured Output
Spaces. In Proceedings of the 21st International Conference on Ma-
chine Learning, pages 104–112, Helsinki, Finland, 5–9 Jul. 2004. ACM.
doi:10.1145/1015330.1015341.

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 75

[23] H. Daumé III, J. Langford, and D. Marcu. Search-based struc-
tured prediction. Machine Learning Journal, 75(3):297–325, 2009.
doi:10.1007/s10994-009-5106-x.

[24] N. Nguyen and Y. Guo. Comparisons of Sequence Labeling Algorithms
and Extensions. In Proceedings of the 24th International Conference
on Machine Learning, pages 681–688, Corvallis, USA, 20–24 Jun. 2007.
ACM. doi:10.1145/1273496.1273582.

[25] J. J. Jung. Online named entity recognition method for microtexts in social
networking services: A case study of twitter. Expert Systems with Appli-
cations, 39(9):8066–8070, 2012. doi:10.1016/j.eswa.2012.01.136.

[26] D. Küçük and A. Yazıcı. A hybrid named entity recognizer for
Turkish. Expert Systems with Applications, 39(3):2733–2742, 2012.
doi:10.1016/j.eswa.2011.08.131.

[27] J. Atkinson and V. Bull. A multi-strategy approach to biological named
entity recognition. Expert Systems with Applications, 39(17):12968–
12974, 2012. doi:10.1016/j.eswa.2012.05.033.

[28] M. Konkol, T. Brychcín, and M. Konopík. Latent semantics in Named
Entity Recognition. Expert Systems with Applications, 42(7):3470–
3479, 2015. doi:10.1016/j.eswa.2014.12.015.

[29] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa. Natural Language Processing (Almost) from Scratch. Journal of
Machine Learning Research, 12:2493–2537, November 2011.

[30] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to Sequence Learning
with Neural Networks. In Proceedings of the 27th International Con-
ference on Neural Information Processing Systems, pages 3104–3112,
Montreal, Canada, 08–13 Dec. 2014. MIT Press.

[31] E. Kiperwasser and Y. Goldberg. Simple and Accurate Dependency Pars-
ing Using Bidirectional LSTM Feature Representations. Transactions of
the Association for Computational Linguistics, 4:313–327, 2016.

[32] D. Gillick, C. Brunk, O. Vinyals, and A. Subramanya. Multilingual
Language Processing From Bytes. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 1296–1306,
San Diego, California, 12–17 Jun. 2016.

[33] Z. Huang, W. Xu, and K. Yu. Bidirectional LSTM-CRF models for se-
quence tagging. arXiv preprint arXiv:1508.01991, 2015.

76 CHAPTER 3

[34] X. Ma and E. Hovy. End-to-end Sequence Labeling via Bi-directional
LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
pages 1064–1074, Berlin, Germany, 7–12 Aug. 2016.

[35] R. McDonald, F. Pereira, K. Ribarov, and J. Hajic. Non-Projective De-
pendency Parsing using Spanning Tree Algorithms. In Proceedings of Hu-
man Language Technology Conference and Conference on Empirical
Methods in Natural Language Processing, pages 523–530, Vancouver,
British Columbia, Canada, 06–08 Oct. 2005. Association for Computa-
tional Linguistics.

[36] R. McDonald and F. Pereira. Online Learning of Approximate Depen-
dency Parsing Algorithms. In Proceedings of the 11th Conference of the
European Chapter of the Association for Computational Linguistics,
pages 81–88, Trento, Italy, 5–6 Apr. 2007.

[37] J. M. Eisner. Three New Probabilistic Models for Dependency Parsing: An
Exploration. In Proceedings of the 16th International Conference on
Computational Linguistics (Volume 1), pages 340–345, Copenhagen,
Denmark, 5–9 Aug. 1996.

[38] Y.-J. Chu and T.-H. Liu. On shortest arborescence of a directed graph.
Scientia Sinica, 14:1396–1400, 1965.

[39] J. Edmonds. Optimum branchings. Journal of research of the National
Bureau of Standards, 71B(4):233–240, 1967.

[40] X. Carreras. Experiments with a Higher-Order Projective Dependency
Parser. In Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Nat-
ural Language Learning, pages 957–961, Prague, Czech, 28–30 Jun.
2007. Association for Computational Linguistics.

[41] H. Zhang and R. McDonald. Generalized Higher-Order Dependency
Parsing with Cube Pruning. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computa-
tional Natural Language Learning, pages 320–331, Jeju Island, Korea,
12–14 Jul. 2012. Association for Computational Linguistics.

[42] T. Koo, A. Globerson, X. Carreras, and M. Collins. Structured Predic-
tion Models via the Matrix-Tree Theorem. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning, pages 141–150,

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 77

Prague, Czech, 28–30 Jun. 2007. Association for Computational Lin-
guistics.

[43] W. T. Tutte. Graph Theory. In Encyclopedia of Mathematics and its
Applications, volume 21, page 138. Cambridge University Press, 2001.

[44] W. Wang and B. Chang. Graph-based Dependency Parsing with Bidirec-
tional LSTM. In Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers), pages
2306–2315, Berlin, Germany, 7–12 Aug. 2016.

[45] H. Yamada and Y. Matsumoto. Statistical dependency analysis with sup-
port vector machines. In Proceedings of the 8th International Workshop
on Parsing Technologies, pages 195–206, Nancy, France, 23–25 Apr.
2003.

[46] J. Nivre, J. Hall, J. Nilsson, G. Eryiǧit, and S. Marinov. Labeled Pseudo-
Projective Dependency Parsing with Support Vector Machines. In Pro-
ceedings of the 10th Conference on Computational Natural Language
Learning, pages 221–225, New York, USA, 8–9 Jun. 2006. Association
for Computational Linguistics.

[47] J. Nivre. An efficient algorithm for projective dependency parsing. In Pro-
ceedings of the 8th International Workshop on Parsing Technologies,
pages 149–160, Nancy, France, 23–25 Apr. 2003.

[48] J. Nivre. Non-Projective Dependency Parsing in Expected Linear Time. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the
Association for Computational Linguistics and the 4th International
Joint Conference on Natural Language Processing of the Asian Feder-
ation of Natural Language Processing, pages 351–359, Singapore, 2–7
Aug. 2009.

[49] D. Chen and C. Manning. A Fast and Accurate Dependency Parser using
Neural Networks. In Proceedings of the 2014 Conference on Empiri-
cal Methods in Natural Language Processing, pages 740–750, Doha,
Qatar, 25–29 Oct. 2014. Association for Computational Linguistics.

[50] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev,
S. Petrov, and M. Collins. Globally Normalized Transition-Based Neural
Networks. In Proceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pages
2442–2452, Berlin, Germany, 7–12 Aug. 2016.

78 CHAPTER 3

[51] C. Dyer, M. Ballesteros, W. Ling, A. Matthews, and N. A. Smith.
Transition-Based Dependency Parsing with Stack Long Short-Term Mem-
ory. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Papers), pages
334–343, Beijing, China, 26–31 Jul. 2015.

[52] M. Miwa and Y. Sasaki. Modeling Joint Entity and Relation Extrac-
tion with Table Representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing, pages 1858–
1869, Doha, Qatar, 25–29 Oct. 2014. Association for Computational
Linguistics.

[53] B. Bohnet and J. Nivre. A Transition-Based System for Joint Part-of-Speech
Tagging and Labeled Non-Projective Dependency Parsing. In Proceed-
ings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learn-
ing, pages 1455–1465, Jeju Island, Korea, 12–14 Jul. 2012. Association
for Computational Linguistics.

[54] L. Ratinov and D. Roth. Design Challenges and Misconceptions in Named
Entity Recognition. In Proceedings of the 13th Conference on Compu-
tational Natural Language Learning, pages 147–155, Boulder, USA,
4–5 Jun. 2009. Association for Computational Linguistics.

[55] F. Peng and A. McCallum. Information extraction from research papers
using conditional random fields. Information processing & management,
42(4):963–979, July 2006. doi:10.1016/j.ipm.2005.09.002?

[56] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Dis-
tributed Representations of Words and Phrases and their Compositionality.
In Proceedings of the 26th International Conference on Neural Infor-
mation Processing Systems, pages 3111–3119, Nevada, United States,
5–10 Dec. 2013. Curran Associates, Inc.

[57] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural
computation, 9(8):1735–1780, 1997. doi:10.1162/neco.1997.9.8.1735.

[58] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel. Backpropagation Applied to Handwrit-
ten Zip Code Recognition. Neural Computation, 1(4):541–551, Dec 1989.
doi:10.1162/neco.1989.1.4.541.

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 79

[59] H. Jaeger. The “echo state” approach to analysing and training recurrent
neural networks-with an erratum note’. Bonn, Germany: German Na-
tional Research Center for Information Technology GMD Technical
Report, 148(34):13, 2010.

[60] D. Wang and M. Li. Stochastic Configuration Networks: Fundamentals
and Algorithms. IEEE Transactions on Cybernetics, 47(10):3466–3479,
Oct 2017. doi:10.1109/TCYB.2017.2734043.

[61] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[62] Y. Goldberg and G. Hirst. Neural Network Methods in Natural Language
Processing. Morgan & Claypool Publishers, 2017.

[63] Y. Bengio, P. Simard, and P. Frasconi. Learning Long-term Dependencies
with Gradient Descent is Difficult. Transactions on neural networks,
5(2):157–166, 1994. doi:10.1109/72.279181.

[64] R. Pascanu, T. Mikolov, and Y. Bengio. On the Difficulty of Training
Recurrent Neural Networks. In Proceedings of the 30th International
Conference on International Conference on Machine Learning, pages
1310–1318, Atlanta, USA, 16–21 Jun. 2013. JMLR.org.

[65] T. Dozat and C. D. Manning. Deep biaffine attention for neural de-
pendency parsing. In Proceedings of the International Conference for
Learning Representations, pages 1–8, Toulon, France, 24–26 Apr. 2017.

[66] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer Networks. In Proceed-
ings of the 28th International Conference on Neural Information Pro-
cessing Systems, pages 2692–2700, Montreal, Canada, 7–12 Dec. 2015.
Curran Associates, Inc.

[67] T. Luong, H. Pham, and C. D. Manning. Effective Approaches to
Attention-based Neural Machine Translation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing,
pages 1412–1421, Lisbon, Portugal, 17–21 Sept. 2015. Association for
Computational Linguistics.

[68] R. Socher, D. Chen, C. D. Manning, and A. Ng. Reasoning With Neural
Tensor Networks for Knowledge Base Completion. In Proceedings of the
26th International Conference on Neural Information Processing Sys-
tems, pages 926–934, Nevada, United States, 5–10 Dec. 2013. Curran
Associates, Inc.

http://www.deeplearningbook.org

80 CHAPTER 3

[69] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl.
Neural Message Passing for Quantum Chemistry. In Proceedings of the
34th International Conference on Machine Learning, pages 1263–1272,
Sydney, Australia, 2017. PMLR.

[70] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A System for Large-scale Ma-
chine Learning. In Proceedings of the 12th USENIX Conference on Op-
erating Systems Design and Implementation, pages 265–283, Berkeley,
CA, USA, 2016.

[71] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In In-
ternational Conference on Learning Representations, San Diego, USA,
2015.

[72] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov. Dropout: A Simple Way to Prevent Neural Networks from Overfit-
ting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[73] R. Caruana, S. Lawrence, and L. Giles. Overfitting in Neural Nets: Back-
propagation, Conjugate Gradient, and Early Stopping. In Proceedings of
the 13th International Conference on Neural Information Processing
Systems, pages 381–387, Denver, USA, 2000. MIT Press.

[74] A. Graves, A. r. Mohamed, and G. Hinton. Speech recogni-
tion with deep recurrent neural networks. In Proceedings of the
International Conference on Acoustics, Speech and Signal Pro-
cessing, pages 6645–6649, Vancouver, Canada, 26–31 May. 2013.
doi:10.1109/ICASSP.2013.6638947.

[75] K. Lee, L. He, M. Lewis, and L. Zettlemoyer. End-to-end Neural
Coreference Resolution. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pages
188–197, Copenhagen, Denmark, September 2017. Association for
Computational Linguistics. Available from: https://www.aclweb.
org/anthology/D17-1018, doi:10.18653/v1/D17-1018.

[76] K. Lee, L. He, and L. Zettlemoyer. Higher-Order Coreference Resolu-
tion with Coarse-to-Fine Inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 2 (Short

https://www.aclweb.org/anthology/D17-1018
https://www.aclweb.org/anthology/D17-1018

JOINT SEGMENTATION AND PARSING FOR REAL ESTATE ADS 81

Papers), pages 687–692, New Orleans, Louisiana, June 2018. Associ-
ation for Computational Linguistics. Available from: https://www.
aclweb.org/anthology/N18-2108, doi:10.18653/v1/N18-2108.

https://www.aclweb.org/anthology/N18-2108
https://www.aclweb.org/anthology/N18-2108

4A
Joint entity recognition and relation
extraction as a multi-head selection

problem

In this chapter, we present a new general purpose joint model that is able to reduce
the quadratic complexity of the sequence labeling module presented in Chapter 3.
Unlike the work presented in previous chapters (see Chapter 2 and Chapter 3)
where we focused on a particular problem (i.e., recovering the tree structured de-
scription of a real estate property given its natural language description), in this
chapter, we evaluate our model on various scenarios. To this end, solutions such
as the MTT that have been proposed for structured prediction problems are not
applicable in a more general setting. The same holds for the attentive architectures
that are presented in Chapter 3 since this kind of schemes complicate the model
(i.e., a simple model is always preferred compared to a more complex one) and
cannot generalize well on several datasets (i.e., each attention mechanism can be
beneficial in a different setting). Specifically, our model achieves state-of-the-art
performance in a number of different contexts (i.e., news, biomedical, real estate)
and languages (i.e., English, Dutch) without relying on any manually engineered
features nor additional NLP tools.

? ? ?

84 CHAPTER 4

G. Bekoulis, J. Deleu, T. Demeester and C. Develder

Published in Expert Systems with Applications, Volume 114, 30 Decem-
ber 2018.

Abstract State-of-the-art models for joint entity recognition and relation ex-
traction strongly rely on external natural language processing (NLP) tools
such as POS (part-of-speech) taggers and dependency parsers. Thus, the
performance of such joint models depends on the quality of the features
obtained from these NLP tools. However, these features are not always ac-
curate for various languages and contexts. In this paper, we propose a joint
neural model which performs entity recognition and relation extraction si-
multaneously, without the need of any manually extracted features or the
use of any external tool. Specifically, we model the entity recognition task
using a CRF (Conditional Random Fields) layer and the relation extraction
task as a multi-head selection problem (i.e., potentially identify multiple
relations for each entity). We present an extensive experimental setup, to
demonstrate the effectiveness of our method using datasets from various
contexts (i.e., news, biomedical, real estate) and languages (i.e., English,
Dutch). Our model outperforms the previous neural models that use auto-
matically extracted features, while it performs within a reasonable margin
of feature-based neural models, or even beats them.

4A.1 Introduction

The goal of entity recognition and relation extraction is to discover rela-
tional structures of entity mentions from unstructured texts. It is a cen-
tral problem in information extraction since it is critical for tasks such as
knowledge base population and question answering.

The problem is traditionally approached in a pipeline setting as two
separate subtasks, namely (i) named entity recognition (NER) [1] and (ii) re-
lation extraction (RE) [2]. The main limitations of the pipeline models
are: (i) error propagation between the components (i.e., NER and RE) and
(ii) possible useful information from the one task is not exploited by the
other (e.g., identifying a Works for relation might be helpful for the NER
module in detecting the type of the two entities, i.e., Person (PER), Or-
ganization (ORG) and vice versa). On the other hand, more recent stud-
ies propose to use joint models to detect entities and their relations over-
coming the aforementioned issues and achieving state-of-the-art perfor-
mance [3, 4].

The previous joint models heavily rely on hand-crafted features. Recent

JOINT ENTITY RECOGNITION AND RELATION EXTRACTION 85

advances in neural networks alleviate the issue of manual feature engineer-
ing, but some of them still depend on NLP tools (e.g., POS taggers, depen-
dency parsers). Miwa and Bansal [5] propose a Recurrent Neural Network
(RNN)-based joint model that uses a bidirectional sequential LSTM (Long
Short Term Memory) to model the entities and a tree-LSTM that takes into
account dependency tree information to model the relations between the
entities. The dependency information is extracted using an external depen-
dency parser. Similarly, in the work of [6] for entity and relation extraction
from biomedical text, a model which also uses tree-LSTMs is applied to ex-
tract dependency information. Gupta et al. [7] propose a method that relies
on RNNs but uses a lot of hand-crafted features and additional NLP tools
to extract features such as POS-tags, etc. Adel and Schütze [8] replicate the
context around the entities with Convolutional Neural Networks (CNNs).
Note that the aforementioned works examine pairs of entities for relation
extraction, rather than modeling the whole sentence directly. This means
that relations of other pairs of entities in the same sentence — which could
be helpful in deciding on the relation type for a particular pair — are not
taken into account. Katiyar and Cardie [9] propose a neural joint model
based on LSTMs where they model the whole sentence at once, but still
they do not have a principled way to deal with multiple relations. Bek-
oulis et al. [10] introduce a quadratic scoring layer to model the two tasks
simultaneously. The limitation of this approach is that only a single rela-
tion can be assigned to a token, while the time complexity for the entity
recognition task is increased compared to the standard approaches with
linear complexity.

In this work, we focus on a new general purpose joint model that per-
forms the two tasks of entity recognition and relation extraction simultane-
ously, and that can handle multiple relations together. Our model achieves
state-of-the-art performance in a number of different contexts (i.e., news,
biomedical, real estate) and languages (i.e., English, Dutch) without rely-
ing on any manually engineered features nor additional NLP tools. In sum-
mary, our proposed model (which will be detailed next in Section 4A.3)
solves several shortcomings that were identified in related works (Sec-
tion 4A.2) for joint entity recognition and relation extraction: (i) our model
does not rely on external NLP tools nor hand-crafted features, (ii) entities
and relations within the same text fragment (typically a sentence) are ex-
tracted simultaneously, where (iii) an entity can be involved in multiple
relations at once.

Specifically, the model of Miwa and Bansal [5] depends on dependency
parsers, which perform particularly well on specific languages (i.e., Eng-
lish) and contexts (i.e., news). Yet, our ambition is to develop a model that

86 CHAPTER 4

generalizes well in various setups, therefore using only automatically ex-
tracted features that are learned during training. For instance, [5] and [6]
use exactly the same model in different contexts, i.e., news (ACE04) and
biomedical data (ADE), respectively. Comparing our results to the ADE
dataset, we obtain a 1.8% improvement on the NER task and ∼3% on the
RE task. On the other hand, our model performs within a reasonable mar-
gin (∼0.6% in the NER task and∼1% on the RE task) on the ACE04 dataset
without the use of pre-calculated features. This shows that the model of [5]
strongly relies on the features extracted by the dependency parsers and
cannot generalize well into different contexts where dependency parser
features are weak. Comparing to Adel and Schütze [8], we train our model
by modeling all the entities and the relations of the sentence at once. This
type of inference is beneficial in obtaining information about neighboring
entities and relations instead of just examining a pair of entities each time.
Finally, we solve the underlying problem of the models proposed by [9]
and [11], who essentially assume classes (i.e., relations) to be mutually ex-
clusive: we solve this by phrasing the relation extraction component as a
multi-label prediction problem.1

To demonstrate the effectiveness of the proposed method, we conduct
the largest experimental evaluation to date (to the best of our knowledge)
in jointly performing both entity recognition and relation extraction (see
Section 4A.4 and Section 4A.5), using different datasets from various do-
mains (i.e., news, biomedical, real estate) and languages (i.e., English and
Dutch). Specifically, we apply our method to four datasets, namely ACE04
(news), Adverse Drug Events (ADE), Dutch Real Estate Classifieds (DREC)
and CoNLL’04 (news). Our method outperforms all state-of-the-art meth-
ods that do not rely on any additional features or tools, while performance
is very close (or even better in the biomedical dataset) compared to meth-
ods that do exploit hand-engineered features or NLP tools.

4A.2 Related work

The tasks of entity recognition and relation extraction can be applied ei-
ther one by one in a pipeline setting [11–13] or in a joint model [4, 5, 10].
In this section, we present related work for each task (i.e., named entity
recognition and relation extraction) as well as prior work into joint entity
and relation extraction.

1Note that another difference is that we use a CRF layer for the NER part, while [9] uses
a softmax and [11] uses a quadratic scoring layer; see further, when we discuss performance
comparison results in Section 4A.5.

JOINT ENTITY RECOGNITION AND RELATION EXTRACTION 87

4A.2.1 Named entity recognition

In our work, NER is the first task which we solve in order to address the
end-to-end relation extraction problem. A number of different methods for
the NER task that are based on hand-crafted features have been proposed,
such as CRFs [14], Maximum Margin Markov Networks [15] and support
vector machines (SVMs) for structured output [16], to name just a few. Re-
cently, deep learning methods such as CNN- and RNN-based models have
been combined with CRF loss functions [17–20] for NER. These methods
achieve state-of-the-art performance on publicly available NER datasets
without relying on hand-crafted features.

4A.2.2 Relation extraction

We consider relation extraction as the second task of our joint model. The
main approaches for relation extraction rely either on hand-crafted fea-
tures [21, 22] or neural networks [23, 24]. Feature-based methods focus on
obtaining effective hand-crafted features, for instance defining kernel func-
tions [21, 25] and designing lexical, syntactic, semantic features, etc. [22,
26]. Neural network models have been proposed to overcome the issue
of manually designing hand-crafted features leading to improved perfor-
mance. CNN- [24, 27, 28] and RNN-based [29–31] models have been intro-
duced to automatically extract lexical and sentence level features leading
to a deeper language understanding. Vu et al. [32] combine CNNs and
RNNs using an ensemble scheme to achieve state-of-the-art results.

4A.2.3 Joint entity and relation extraction

Entity and relation extraction includes the task of (i) identifying the entities
(described in Section 4A.2.1) and (ii) extracting the relations among them
(described in Section 4A.2.2). Feature-based joint models [3, 4, 33, 34] have
been proposed to simultaneously solve the entity recognition and relation
extraction (RE) subtasks. These methods rely on the availability of NLP
tools (e.g., POS taggers) or manually designed features and thus (i) require
additional effort for the data preprocessing, (ii) perform poorly in differ-
ent application and language settings where the NLP tools are not reliable,
and (iii) increase the computational complexity (since these models require
the use of computationally-intensive external tools during inference time).
In this paper, we introduce a joint neural network model to overcome the
aforementioned issues and to automatically perform end-to-end relation
extraction without the need of any manual feature engineering or the use
of additional NLP components. Neural network approaches have been

88 CHAPTER 4

Smith headed the Disease Control Center

h1 h2 h3 h4 h5 h6

Embedding
Layer

BiLSTM
Layer

Sigmoid
Layer

Center, Atlanta
Works for, Lives inRelations

Heads the
N

headed
N

Disease
N

Control
N

Atlanta
Located in

LSTM LSTM LSTM LSTM LSTM LSTM

Atlantain

h7 h8

LSTM LSTM

in
N

Atlanta
N

I-PER
CRF
Layer

O B-ORGO I-ORG I-ORG O B-LOC

.

h9
LSTM

O

.
N

Label
Embeddings

John

h0

LSTM

B-PER

John
N

Figure 4A.1: The multi-head selection model for joint entity and relation extraction.
The input of our model is the words of the sentence which are then
represented as word vectors (i.e., embeddings). The BiLSTM layer ex-
tracts a left+right context aware representation for each word. Then
the CRF and the sigmoid layers are able to produce the outputs for
the two tasks. The outputs for each token (e.g., Smith) are: (i) an en-
tity recognition label (e.g., I-PER) and (ii) a set of tuples comprising
the head tokens of the entity and the types of relations between them
(e.g., {(Center, Works for), (Atlanta, Lives in)}). The outputs of each sub-
task (i.e., NER and relation extraction) are depicted in red and blue,
respectively.

considered to address the problem in a joint setting (end-to-end relation ex-
traction) and typically include the use of RNNs and CNNs [5, 6, 35]. Specif-
ically, Miwa and Bansal [5] propose the use of bidirectional tree-structured
RNNs to capture dependency tree information (where parse trees are ex-
tracted using state-of-the-art dependency parsers) which has been proven
beneficial for relation extraction [27, 31]. Li et al. [6] apply the work of
Miwa and Bansal [5] to biomedical text, reporting state-of-the-art perfor-
mance for two biomedical datasets. Gupta et al. [7] propose the use of a
lot of hand-crafted features along with RNNs. Adel and Schütze [8] solve
the entity classification task (which is different from NER since in entity
classification the boundaries of the entities are known and only the type of
the entity should be predicted) and relation extraction problems using an
approximation of a global normalization objective (i.e., CRF): they repli-
cate the context of the sentence (left and right part of the entities) to feed

JOINT ENTITY RECOGNITION AND RELATION EXTRACTION 89

one entity pair at a time to a CNN for relation extraction. Thus, they do not
simultaneously infer other potential entities and relations within the same
sentence. Katiyar and Cardie [9] and Bekoulis et al. [10] investigate RNNs
with attention for extracting relations between entity mentions without us-
ing any dependency parse tree features.

Different from [9], in this work, we frame the problem as a multi-head
selection problem by using a sigmoid loss to obtain multiple relations and
a CRF loss for the NER component. This way, we are able to independently
predict classes that are not mutually exclusive, instead of assigning equal
probability values among the tokens. We overcome the issue of additional
complexity described by [10], by dividing the loss functions into a NER and
a relation extraction component. Moreover, we are able to handle multiple
relations instead of just predicting single ones, as was described for the
application of structured real estate advertisements of [10].

4A.3 Joint model

In this section, we present our multi-head joint model as illustrated in
Fig. 4A.1. The model is able to simultaneously identify the entities (i.e.,
types and boundaries) and all the possible relations between them at once.
We formulate the problem as a multi-head selection problem extending
previous work [10, 36], overcoming the issue of additional complexity (by
the NER module) and handling multiple relations together as described in
Section 4A.2.3. By multi-head, we mean that any particular entity may be
involved in multiple relations with other entities. The basic layers of the
model, shown in Fig. 4A.1, are: (i) an embedding layer, (ii) a bidirectional
sequential LSTM (BiLSTM) layer, (iii) a CRF layer and (iv) a sigmoid scor-
ing layer. In Fig. 4A.1, an example sentence from the CoNLL04 dataset is
presented. The input of our model is a sequence of tokens (i.e., words of the
sentence) which are then represented as word vectors (i.e., word embed-
dings). The BiLSTM layer is able to extract a more complex representation
for each word that incorporates the context via the RNN structure. Then
the CRF and the sigmoid layers are able to produce the outputs for the two
tasks. The outputs for each token (e.g., Smith) are twofold: (i) an entity
recognition label (e.g., I-PER, denoting the token is inside a named entity
of type PER) and (ii) a set of tuples comprising the head tokens of the entity
and the types of relations between them (e.g., {(Center, Works for), (Atlanta,
Lives in)}). Since we assume token-based encoding, we consider only the
last token of the entity as head of another token, eliminating redundant
relations. For instance, there is a Works for relation between entities “John
Smith” and “Disease Control Center”. Instead of connecting all tokens of

90 CHAPTER 4

M a n

FM FMa FMan

BMan Ban Bn

Wchars Wword2vec

Figure 4A.2: Embedding layer in detail. The characters of the word “Man” are rep-
resented by character vectors (i.e., embeddings) that are learned dur-
ing training. The character embeddings are fed to a BiLSTM and the
two final states (forward and backward) are concatenated. The vector
wchars is the character-level representation of the word. This vector is
then further concatenated to the word-level representation wword2vec
to obtain the complete word embedding vector.

the entities, we connect only “Smith” with “Center”. Also, for the case of
no relation, we introduce the “N” label and we predict the token itself as
the head.

4A.3.1 Embedding layer

Given a sentence w = w1, ..., wn as a sequence of tokens, the word embed-
ding layer is responsible to map each token to a word vector (wword2vec). For
this we use pre-trained word embeddings using the Skip-Gram word2vec
model [37].

In this work, we also use character embeddings since they are com-
monly applied to neural NER [19, 20]. This type of embeddings is able to
capture morphological features such as prefixes and suffixes. For instance,
in the Adverse Drug Events (ADE) dataset, the suffix “toxicity” can spec-
ify an adverse drug event entity such as “neurotoxicity” or “hepatotoxicity”
and thus it is very informative. Another example might be the Dutch suffix
“kamer” (“room” in English) in the Dutch Real Estate Classifieds (DREC)
dataset which is used to specify the space entities “badkamer” (“bathroom”
in English) and “slaapkamer” (“bedroom” in English). Character-level em-
beddings are learned during training, similar to [20] and [19]. In the work
of [19], character embeddings lead to a performance improvement of up
to 3% in terms of NER F1 score. In our work, by incorporating character
embeddings, we report in Table 4A.2 an increase of∼2% overall F1 scoring
points. For more details, see Section 4A.5.2.

JOINT ENTITY RECOGNITION AND RELATION EXTRACTION 91

Figure 4A.2 illustrates the neural architecture for word embedding gen-
eration based on its characters. The characters of each word are repre-
sented by character vectors (i.e., embeddings). The character embeddings
are fed to a BiLSTM and the two final states (forward and backward) are
concatenated. The vector wchars is the character-level representation of the
word. This vector is then further concatenated to the word-level represen-
tation wword2vec to obtain the complete word embedding vector.

4A.3.2 Bidirectional LSTM encoding layer

RNNs are commonly used in modeling sequential data and have been suc-
cessfully applied in various NLP tasks [5, 19, 38]. In this work, we use
multi-layer LSTMs, a specific kind of RNNs which are able to capture long
term dependencies well [39, 40]. We employ a BiLSTM which is able to en-
code information from left to right (past to future) and right to left (future
to past). This way, we can combine bidirectional information for each word
by concatenating the forward (~hi) and the backward (~hi) output at timestep
i. The BiLSTM output at timestep i can be written as:

hi = [~hi; ~hi], i = 0, ..., n (4A.1)

4A.3.3 Named entity recognition

We formulate the entity identification task as a sequence labeling problem,
similar to previous work on joint learning models [5, 6, 9] and named en-
tity recognition [19, 20] using the BIO (Beginning, Inside, Outside) encod-
ing scheme. Each entity consists of multiple sequential tokens within the
sentence and we should assign a tag for every token in the sentence. That
way we are able to identify the entity arguments (start and end position)
and its type (e.g., ORG). To do so, we assign the B-type (beginning) to the
first token of the entity, the I-type (inside) to every other token within the
entity and the O tag (outside) if a token is not part of an entity. Fig. 4A.1
shows an example of the BIO encoding tags assigned to the tokens of the
sentence. In the CRF layer, one can observe that we assign the B-ORG and
I-ORG tags to indicate the beginning and the inside tokens of the entity
“Disease Control Center”, respectively. On top of the BiLSTM layer, we
employ either a softmax or a CRF layer to calculate the most probable en-
tity tag for each token. We calculate the score of each token wi for each
entity tag:

s(e)(hi) = V(e) f (U(e)hi + b(e)) (4A.2)

where the superscript (e) is used for the notation of the NER task, f (·) is
an element-wise activation function (i.e., relu, tanh), V(e) ∈ Rp×l , U(e) ∈

92 CHAPTER 4

Rl×2d, b(e) ∈ Rl , with d as the hidden size of the LSTM, p the number
of NER tags (e.g., B-ORG) and l the layer width. We calculate the prob-
abilities of all the candidate tags for a given token wi as Pr(tag | wi) =
softmax(s(hi)) where Pr(tag | wi) ∈ Rp. In this work, we employ the soft-
max approach only for the entity classification (EC) task (which is similar
to NER) where we need to predict only the entity types (e.g., PER) for each
token assuming boundaries are given. The CRF approach is used for the
NER task which includes both entity type and boundaries recognition.

In the softmax approach, we assign entity types to tokens in a greedy
way at prediction time (i.e., the selected tag is just the highest scoring tag
over all possible set of tags). Although assuming an independent tag distri-
bution is beneficial for entity classification tasks (e.g., POS tagging), this is
not the case when there are strong dependencies between the tags. Specif-
ically, in NER, the BIO tagging scheme forces several restrictions (e.g., B-
LOC cannot be followed by I–PER). The softmax method allows local deci-
sions (i.e., for the tag of each token wi) even though the BiLSTM captures
information about the neighboring words. Still, the neighboring tags are
not taken into account for the tag decision of a specific token. For example,
in the entity “John Smith”, tagging “Smith” as PER is useful for deciding
that “John” is B-PER. To this end, for NER, we use a linear-chain CRF, simi-
lar to [19] where an improvement of∼1% F1 NER points is reported when
using CRF. In our case, with the use of CRF we also report a ∼1% overall
performance improvement as observed in Table 4A.2 (see Section 4A.5.2).
Assuming the word vector w, a sequence of score vectors s(e)1 , ..., s(e)n and a

vector of tag predictions y(e)1 , ..., y(e)n , the linear-chain CRF score is defined
as:

S
(

y(e)1 , . . . , y(e)n

)
=

n

∑
i=0

s(e)
i,y(e)i

+
n−1

∑
i=1

T
y(e)i ,y(e)i+1

(4A.3)

where S ∈ R, s(e)
i,y(e)i

is the score of the predicted tag for token wi, T is a

square transition matrix in which each entry represents transition scores
from one tag to another. T ∈ R(p+2)×(p+2) because y(e)0 and y(e)n are two
auxiliary tags that represent the starting and the ending tags of the sen-
tence, respectively. Then, the probability of a given sequence of tags over
all possible tag sequences for the input sentence w is defined as:

Pr
(

y(e)1 , . . . , y(e)n

∣∣∣ w
)
=

eS(y(e)1 ,...,y(e)n)

∑
ỹ1

(e),...,ỹn
(e)

eS(ỹ1
(e),...,ỹn

(e))
(4A.4)

We apply Viterbi to obtain the tag sequence ŷ(e) with the highest score.

JOINT ENTITY RECOGNITION AND RELATION EXTRACTION 93

We train both the softmax (for the EC task) and the CRF layer (for NER)
by minimizing the cross-entropy loss LNER. We also use the entity tags as
input to our relation extraction layer by learning label embeddings, moti-
vated by [5] where an improvement of 2% F1 is reported (with the use of
label embeddings). In our case, label embeddings lead to an increase of 1%
F1 score as reported in Table 4A.2 (see Section 4A.5.2). The input to the next
layer is twofold: the output states of the LSTM and the learned label em-
bedding representation, encoding the intuition that knowledge of named
entities can be useful for relation extraction. During training, we use the
gold entity tags, while at prediction time we use the predicted entity tags
as input to the next layer. The input to the next layer is the concatenation
of the hidden LSTM state hi with the label embedding gi for token wi:

zi = [hi; gi], i = 0, ..., n (4A.5)

4A.3.4 Relation extraction as multi-head selection

In this subsection, we describe the relation extraction task, formulated as a
multi-head selection problem [10, 36]. In the general formulation of our
method, each token wi can have multiple heads (i.e., multiple relations
with other tokens). We predict the tuple (ŷi, ĉi) where ŷi is the vector of
heads and ĉi is the vector of the corresponding relations for each token wi.
This is different for the previous standard head selection for dependency
parsing method [36] since (i) it is extended to predict multiple heads and
(ii) the decisions for the heads and the relations are jointly taken (i.e., in-
stead of first predicting the heads and then in a next step the relations by
using an additional classifier). Given as input a token sequence w and a set
of relation labels R, our goal is to identify for each token wi, i ∈ {0, ..., n}
the vector of the most probable heads ŷi ⊆ w and the vector of the most
probable corresponding relation labels r̂i ⊆ R. We calculate the score be-
tween tokens wi and wj given a label rk as follows:

s(r)(zj, zi, rk) = V(r) f (U(r)zj + W(r)zi + b(r)) (4A.6)

where the superscript (r) is used for the notation of the relation task, f (·)
is an element-wise activation function (i.e., relu, tanh), V(r) ∈ Rl , U(r) ∈
Rl×(2d+b), W(r) ∈ Rl×(2d+b), b(r) ∈ Rl , d is the hidden size of the LSTM, b
is the size of the label embeddings and l the layer width. We define

Pr
(
head = wj, label = rk

∣∣ wi
)
= σ(s(r)(zj, zi, rk)) (4A.7)

to be the probability of token wj to be selected as the head of token wi
with the relation label rk between them, where σ(.) stands for the sigmoid

94 CHAPTER 4

function. We minimize the cross-entropy loss Lrel during training:

Lrel =
n

∑
i=0

m

∑
j=0
− log Pr

(
head = yi,j, relation = ri,j

∣∣ wi
)

(4A.8)

where yi ⊆ w and ri ⊆ R are the ground truth vectors of heads and asso-
ciated relation labels of wi and m is the number of relations (heads) for wi.
After training, we keep the combination of heads ŷi and relation labels r̂i
exceeding a threshold based on the estimated joint probability as defined
in Eq. (4A.7). Unlike previous work on joint models [9], we are able to
predict multiple relations considering the classes as independent and not
mutually exclusive (the probabilities do not necessarily sum to 1 for differ-
ent classes). For the joint entity and relation extraction task, we calculate
the final objective as LNER + Lrel.

4A.3.5 Edmonds’ algorithm

Our model is able to simultaneously extract entity mentions and the rela-
tions between them. To demonstrate the effectiveness and the general pur-
pose nature of our model, we also test it on the recently introduced Dutch
real estate classifieds (DREC) dataset [11] where the entities need to form
a tree structure. By using thresholded inference, a tree structure of rela-
tions is not guaranteed. Thus we should enforce tree structure constraints
to our model. To this end, we post-process the output of our system with
Edmonds’ maximum spanning tree algorithm for directed graphs [41, 42].
A fully connected directed graph G = (V, E) is constructed, where the
vertices V represent the last tokens of the identified entities (as predicted
by NER) and the edges E represent the highest scoring relations with their
scores as weights. Edmonds’ algorithm is applied in cases a tree is not
already formed by thresholded inference.

4A.4 Experimental setup

4A.4.1 Datasets and evaluation metrics

We conduct experiments on four datasets: (i) Automatic Content Extrac-
tion, ACE04 [43], (ii) Adverse Drug Events, ADE [44], (iii) Dutch Real Es-
tate Classifieds, DREC [11] and (iv) the CoNLL’04 dataset with entity and
relation recognition corpora [45]. Our code is available in our Github code-
base.2

2https://github.com/bekou/multihead_joint_entity_relation_extraction

https://github.com/bekou/multihead_joint_entity_relation_extraction

JOINT ENTITY RECOGNITION AND RELATION EXTRACTION 95

ACE04: There are seven main entity types namely Person (PER), Organi-
zation (ORG), Geographical Entities (GPE), Location (LOC), Facility (FAC),
Weapon (WEA) and Vehicle (VEH). Also, the dataset defines seven relation
types: Physical (PHYS), Person-Social (PER-SOC), Employment-Membership-
Subsidiary (EMP-ORG), Agent-Artifact (ART), PER-ORG affiliation (Other-
AFF), GPE affiliation (GPE-AFF), and Discourse (DISC). We follow the cross-
validation setting of [3] and [5]. We removed DISC and did 5-fold cross-
validation on the bnews and nwire subsets (348 documents). We obtained
the preprocessing script from Miwa’s Github codebase.3 We measure the
performance of our system using micro F1 scores, Precision and Recall on
both entities and relations. We treat an entity as correct when the entity
type and the region of its head are correct. We treat a relation as correct
when its type and argument entities are correct, similar to [5] and [9]. We
refer to this type of evaluation as strict.4 We select the best hyperparameter
values on a randomly selected validation set for each fold, selected from
the training set (15% of the data) since there are no official train and vali-
dation splits in the work of [5].
CoNLL04: There are four entity types in the dataset (Location, Organization,
Person, and Other) and five relation types (Kill, Live in, Located in, OrgBased
in and Work for). We use the splits defined by [7] and [8]. The dataset con-
sists of 910 training instances, 243 for validation and 288 for testing.5 We
measure the performance by computing the F1 score on the test set. We
adopt two evaluation settings to compare to previous work. Specifically,
we perform an EC task assuming the entity boundaries are given simi-
lar to [7] and [8]. To obtain comparable results, we omit the entity class
“Other” when computing the EC score. We score a multi-token entity as
correct if at least one of its comprising token types is correct assuming that
the boundaries are given; a relation is correct when the type of the rela-
tion and the argument entities are both correct. We report macro-average
F1 scores for EC and RE to obtain comparable results to previous studies.
Moreover, we perform actual NER evaluation instead of just EC, reporting
results using the strict evaluation metric.
DREC: The dataset consists of 2,318 classifieds as described in the work
of [10]. There are 9 entity types: Neighborhood, Floor, Extra building, Subspace,
Invalid, Field, Other, Space and Property. Also, there are two relation classes
Part-of and Equivalent. The goal is to identify important entities of a prop-
erty (e.g., floors, spaces) from classifieds and structuring them into a tree
format to get the structured description of the property. For the evaluation,

3https://github.com/tticoin/LSTM-ER/tree/master/data/ace2004
4For the CoNLL04, DREC and ADE datasets, the head region covers the whole entity (start

and end boundaries). The ACE04 already defines the head region of an entity.
5http://cistern.cis.lmu.de/globalNormalization/globalNormalization_all.zip

https://github.com/tticoin/LSTM-ER/tree/master/data/ace2004
http://cistern.cis.lmu.de/globalNormalization/globalNormalization_all.zip

96 CHAPTER 4

we use 70% for training, 15% for validation and 15% as test set in the same
splits as defined in [10]. We measure the performance by computing the F1
score on the test set. To compare our results with previous work [10], we
use the boundaries evaluation setting. In this setting, we count an entity as
correct if the boundaries of the entity are correct. A relation is correct when
the relation is correct and the argument entities are both correct. Also, we
report results using the strict evaluation for future reference.
ADE: There are two types of entities (drugs and diseases) in this dataset and
the aim of the task is to identify the types of entities and relate each drug
with a disease (adverse drug events). There are 6,821 sentences in total and
similar to previous work [6, 46], we remove ∼130 relations with overlap-
ping entities (e.g., “lithium” is a drug which is related to “lithium intoxica-
tion”). Since there are no official sets, we evaluate our model using 10-fold
cross-validation where 10% of the data was used as validation and 10%
for test set similar to [6]. The final results are displayed in F1 metric as a
macro-average across the folds. The dataset consists of 10,652 entities and
6,682 relations. We report results similar to previous work on this dataset
using the strict evaluation metric.

4A.4.2 Word embeddings

We use pre-trained word2vec embeddings used in previous work, so as
to retain the same inputs for our model and to obtain comparable results
that are not affected by the input embeddings. Specifically, we use the
200-dimensional word embeddings used in the work of [5] for the ACE04
dataset trained on Wikipedia.6 We obtained the 50-dimensional word em-
beddings used by Adel and Schütze [8] trained also on Wikipedia for the
CoNLL04 corpus.5 We use the 128-dimensional word2vec embeddings used
by [10] trained on a large collection of 887k Dutch property advertise-
ments7 for the DREC dataset. Finally, for the ADE dataset, we used 200-
dimensional embeddings used by [6] and trained on a combination of texts
from PubMed and PMC with texts extracted from English Wikipedia [47].8

4A.4.3 Hyperparameters and implementation details

We have developed our joint model by using Python with the TensorFlow
machine learning library [48]. The only layer of our models that is fixed is

6http://tti-coin.jp/data/wikipedia200.bin
7https://drive.google.com/uc?id=1Dvibr-Ps4G_GI6eDx9bMXnJphGhH_M1z&export=

download
8http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.

bin

http://tti-coin.jp/data/wikipedia200.bin
https://drive.google.com/uc?id=1Dvibr-Ps4G_GI6eDx9bMXnJphGhH_M1z&export=download
https://drive.google.com/uc?id=1Dvibr-Ps4G_GI6eDx9bMXnJphGhH_M1z&export=download
http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin
http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin

JOINT ENTITY RECOGNITION AND RELATION EXTRACTION 97

the word-embeddings layer with pre-trained embeddings to have fair com-
parison to previous work. All other parameters of the neural network (in-
cluding character embeddings) are randomly initialized and then trained.
For the hyperparameter tuning, we used grid-search to find the best hy-
perparameters. Specifically, we defined a set of values for each of the hy-
perparameters (e.g., for dropout [0.1, 0.2, 0.3, 0.4, 0.5]) and we tried all the
possible combinations with the different values of the hyperparameters.
Training is performed using the Adam optimizer [49] with a learning rate
of 10−3. We fix the size of the LSTM to d = 64 and the layer width of the
neural network to l = 64 (both for the entity and the relation scoring lay-
ers). We use dropout [50] to regularize our network. Dropout is applied
in the input embeddings and in between the hidden layers for both tasks.
Different dropout rates have been applied but the best dropout values (0.2
to 0.4) for each dataset have been used. The hidden dimension for the
character-based LSTMs is 25 (for each direction). We also fixed our label
embeddings to be of size b = 25 for all the datasets except for CoNLL04
where the label embeddings were not beneficial and thus were not used.
We experimented with tanh and relu activation functions (recall that this is
the function f (·) from the model description). We use the relu activation
only in the ACE04 and tanh in all other datasets. We employ the technique
of early stopping based on the validation set. In all the datasets examined
in this study, we obtain the best hyperparameters after 60 to 200 epochs
depending on the size of the dataset. We select the best epoch according to
the results in the validation set. For more details about the effect of each
hyperparameter to the model performance see the Appendix.

4A.5 Results and discussion

4A.5.1 Results

In Table 4A.1, we present the results of our analysis. Note that based on
simple binomial distributions, we also compute confidence intervals for
each dataset. The first column indicates the considered dataset. In the
second column, we denote the model which is applied (i.e., previous work
and the proposed models). The proposed models are the following: (i) mul-
ti-head is the proposed model with the CRF layer for NER and the sigmoid
loss for multiple head prediction, (ii) multi-head+E is the proposed model
with addition of Edmonds’ algorithm to guarantee a tree-structured out-
put for the DREC dataset, (iii) single-head is the proposed method but it
predicts only one head per token using a softmax loss instead of a sigmoid,
and (iv) multi-head EC is the proposed method with a softmax to predict the

98 CHAPTER 4

entity classes assuming that the boundaries are given, and the sigmoid loss
for multiple head selection. Table 4A.1 also indicates whether the different
settings include hand-crafted features or features derived from NLP tools
(e.g., POS taggers, dependency parsers). We use the 3 symbol to denote
that the model includes this kind of additional features and the 7 symbol
to denote that the model is only based on automatically extracted features.
Note that all the variations of our model do not rely on any additional fea-
tures. In the next column, we declare the type of evaluation conducted
for each experiment. We include here different evaluation types to be able
to compare our results against previous studies. Specifically, we use three
evaluation types, namely:

(i) Strict: an entity is considered correct if the boundaries and the type
of the entity are both correct; a relation is correct when the type of the
relation and the argument entities are both correct,

(ii) Boundaries: an entity is considered correct if only the boundaries of
the entity are correct (entity type is not considered); a relation is cor-
rect when the type of the relation and the argument entities are both
correct,

(iii) Relaxed: we score a multi-token entity as correct if at least one of its
comprising token types is correct assuming that the boundaries are
given; a relation is correct when the type of the relation and the argu-
ment entities are both correct.

In the next three columns, we present the results for the entity identifica-
tion task (Precision, Recall, F1) and then (in the subsequent three columns)
the results of the relation extraction task (Precision, Recall, F1). Finally, in
the last column, we report an additional F1 measure which is the average
F1 performance of the two subtasks. We mark with bold font in Table 4A.1,
the best result for each dataset among those models that use only auto-
matically extracted features. Considering the results in the ACE04, we ob-
serve that our model outperforms the model of [9] by ∼2% in both tasks.
This improvement can be explained by the use of the multi-head selection
method which can naturally capture multiple relations and model them as
a multi-label problem. Unlike the work of [9], the class probabilities do not
necessarily sum up to one since the classes are considered independent.
Moreover, we use a CRF-layer to model the NER task to capture depen-
dencies between sequential tokens. Finally, we obtain more effective word
representations by using character-level embeddings. On the other hand,
our model performs within a reasonable margin (∼0.5% for the NER task
and ∼1% for the RE task) compared to [5]. This difference is explained by

JOINT ENTITY RECOGNITION AND RELATION EXTRACTION 99

Table 4A.1: Comparison of our method (multi-head) with the state-of-the-art on the
ACE04, CoNLL04, DREC and ADE datasets. The models: (i) multi-
head+E (the model + the Edmond algorithm to produce a tree-
structured output), (ii) single-head (the model predicts only one head
per token) and (iii) multi-head EC (the model predicts only the entity
classes assuming that the boundaries are given) are slight variations of
the multi-head model adapted for each dataset and evaluation. The
3and 7 symbols indicate whether or not the models rely on any hand-
crafted features or additional tools. Note that all the variations of our
models do not rely on any additional features. We include here differ-
ent evaluation types (strict, relaxed and boundaries) to be able to compare
our results against previous studies. Finally, we report results in terms
of Precision, Recall, F1 for the two subtasks as well as overall F1, aver-
aging over both subtasks. Bold entries indicate the best result among
models that only consider automatically learned features. Note that
we also compute confidence intervals for each dataset based on simple
binomial distributions for the proposed models.

Pre-calculated Entity Relation
Settings Features Evaluation P R F1 P R F1 Overall F1

A
C

E
04

Miwa & Bansal (2016) [5] 3 strict 80.8 82.9 81.8 48.7 48.1 48.4 65.1
Katiyar & Cardie (2017) [9] 7 strict 81.2 78.1 79.6 46.4 45.5 45.7 62.7

multi-head 7 strict 81.0 81.3 81.2 50.1 44.5 47.1 64.2±0.53

C
oN

LL
04

Gupta et al. (2016) [7] 3 relaxed 92.5 92.1 92.4 78.5 63.0 69.9 81.2
Gupta et al. (2016) [7] 7 relaxed 88.5 88.9 88.8 64.6 53.1 58.3 73.6

Adel & Schütze [8] 7 relaxed - - 82.1 - - 62.5 72.3
multi-head EC 7 relaxed 93.4 93.2 93.3 73.0 63.4 67.0 80.1±0.6

Miwa & Sasaki (2014) [4] 3 strict 81.2 80.2 80.7 76.0 50.9 61.0 70.9
multi-head 7 strict 83.8 84.1 83.9 63.8 60.4 62.0 73.0±0.5

D
R

EC

Bekoulis et al. (2018) [10] 7 boundaries 77.9 80.3 79.1 49.2 50.1 49.7 64.4
multi-head+E 7 boundaries 79.8 84.9 82.3 50.5 55.3 52.8 67.5
single-head 7 strict 78.8 84.2 81.4 50.5 54.3 52.3 66.9
multi-head 7 strict 78.9 83.9 81.3 50.0 54.7 52.2 66.8±0.35

A
D

E Li et al. (2016) [46] 3 strict 79.5 79.6 79.5 64.0 62.9 63.4 71.4
Li et al. (2017) [6] 3 strict 82.7 86.7 84.6 67.5 75.8 71.4 78.0

multi-head 7 strict 84.7 88.1 86.4 72.1 77.2 74.5 80.4±0.17

the fact that the model of [5] relies on POS tagging and syntactic features
derived by dependency parsing. However, this kind of features relies on
NLP tools that are not always accurate for various languages and contexts.
For instance, the same model is adopted by the work of [6] for the ADE
biomedical dataset and in this dataset our model reports more than 3% im-
provement in the RE task. This shows that our model is able to produce
automatically extracted features which perform reasonably well in all con-
texts (e.g., news, biomedical).

For the CoNLL04 dataset, there are two different evaluation settings,
namely relaxed and strict. In the relaxed setting, we perform an EC task
instead of NER assuming that the boundaries of the entities are given.
We adopt this setting to produce comparable results with previous stud-
ies [7, 8]. Similar to [8], we present results of single models and no ensem-
bles. We observe that our model outperforms all previous models that do

100 CHAPTER 4

not rely on complex hand-crafted features by a large margin (>4% for both
tasks). Unlike these previous studies that consider pairs of entities to ob-
tain the entity types and the corresponding relations, we model the whole
sentence at once. That way, our method is able to directly infer all entities
and relations of a sentence and benefit from their possible interactions that
cannot be modeled when training is performed for each entity pair indi-
vidually, one at a time. In the same setting, we also report the results of [7]
in which they use multiple complicated hand-crafted features coming from
NLP tools. Our model performs slightly better for the EC task and within
a margin of 1% in terms of overall F1 score. The difference in the over-
all performance is due to the fact that our model uses only automatically
generated features. We also report results on the same dataset conducting
NER (i.e., predicting entity types and boundaries) and evaluating using
the strict evaluation measure, similar to [4]. Our results are not directly
comparable to the work of [4] because we use the splits provided by [7].
However, in this setting we present the results from [4] as reference. We
report an improvement of ∼2% overall F1 score, which suggests that our
neural model is able to extract more informative representations compared
to feature-based approaches.

We also report results for the DREC dataset, with two different evalua-
tion settings. Specifically, we use the boundaries and the strict settings. We
transform the previous results from [10] to the boundaries setting to make
them comparable to our model since in their work, they report token-based
F1 score, which is not a common evaluation metric in relation extraction
problems. Also, in their work, they focus on identifying only the bound-
aries of the entities and not the types (e.g., Floor, Space). In the boundaries
evaluation, we achieve ∼3% improvement for both tasks. This is due to
the fact that their quadratic scoring layer is beneficial for the RE task, yet
complicates NER, which is usually modeled as a sequence labeling task.
Moreover, we report results using the strict evaluation which is used in
most related works. Using the prior knowledge that each entity has only
one head, we can simplify our model and predict only one head each time
(i.e., using a softmax loss). The difference between the single and the multi-
head models is marginal (<0.1% for both tasks). This shows that our model
(multi-head) can adapt to various environments, even if the setting is sin-
gle head (in terms of the application, and thus also in both training and test
data).

Finally, we compare our model with previous work [6, 46] on the ADE
dataset. The previous models [6, 46] both use hand-crafted features or fea-
tures derived from NLP tools. However, our model is able to outperform
both models using the strict evaluation metric. We report an improvement

JOINT ENTITY RECOGNITION AND RELATION EXTRACTION 101

Table 4A.2: Ablation tests on the ACE04 test dataset.

Entity Relation
Settings P R F1 P R F1 Overall F1

Multi-head 81.0 81.3 81.1 50.1 44.4 47.1 64.1
−Label embeddings 80.6 80.9 80.7 50.0 42.9 46.1 63.4
−Character embeddings 80.4 79.5 79.9 49.0 41.6 45.0 62.5
−CRF loss 80.4 81.5 80.9 47.3 42.8 44.9 62.9

of ∼2% in the NER and ∼3% in the RE tasks, respectively. The work of [6]
is similar to [5] and strongly relies on dependency parsers to extract syntac-
tic information. A possible explanation for the better result obtained from
our model is that the pre-calculated syntactic information obtained using
external tools either is not so accurate or important for biomedical data.

4A.5.2 Analysis of feature contribution

We conduct ablation tests on the ACE04 dataset reported in Table 4A.2
to analyze the effectiveness of the various parts of our joint model. The
performance of the RE task decreases (∼1% in terms of F1 score) when we
remove the label embeddings layer and only use the LSTM hidden states
as inputs for the RE task. This shows that the NER labels, as expected,
provide meaningful information for the RE component.

Removing character embeddings also degrades the performance of both
NER (∼1%) and RE (∼2%) tasks by a relatively large margin. This illus-
trates that composing words by the representation of characters is effec-
tive, and our method benefits from additional information such as capital
letters, suffixes and prefixes within the token (i.e., its character sequences).

Finally, we conduct experiments for the NER task by removing the CRF
loss layer and substituting it with a softmax. Assuming independent dis-
tribution of labels (i.e., softmax) leads to a slight decrease in the F1 perfor-
mance of the NER module and a ∼2% decrease in the performance of the
RE task. This happens because the CRF loss is able to capture the strong
tag dependencies (e.g., I-LOC cannot follow B-PER) that are present in the
dataset instead of just assuming that the tag decision for each token is in-
dependent from tag decisions of neighboring tokens.

4A.6 Conclusion

In this work, we present a joint neural model to simultaneously extract en-
tities and relations from textual data. Our model comprises a CRF layer for
the entity recognition task and a sigmoid layer for the relation extraction

102 CHAPTER 4

task. Specifically, we model the relation extraction task as a multi-head
selection problem since one entity can have multiple relations. Previous
models on this task rely heavily on external NLP tools (i.e., POS taggers,
dependency parsers). Thus, the performance of these models is affected by
the accuracy of the extracted features. Unlike previous studies, our model
produces automatically generated features rather than relying on hand-
crafted ones, or existing NLP tools. Given its independence from such
NLP or other feature generating tools, our approach can be easily adopted
for any language and context. We demonstrate the effectiveness of our
approach by conducting a large scale experimental study. Our model is
able to outperform neural methods that automatically generate features
while the results are marginally similar (or sometimes better) compared to
feature-based neural network approaches. In addition, compared to our
previous work presented in Chapter 3, we reduce the NER complexity by
removing the NER module from the quadratic layer. Note that although
this is not mentioned in the results section, during our early experiments,
we observed a better F1 performance of our new method (over the one
reported in Chapter 3). We hypothesize that this is because neighboring
tokens are more likely to belong to the same segment rather than tokens
that are non-adjacent. Thus, although the quadratic layer is really crucial
for obtaining state-of-the-art performance for the RE task, it basically com-
plicates NER leading to a slight performance decrease.

As future work, we aim to explore the effectiveness of entity pre-training
for the entity recognition module. This approach has been proven benefi-
cial in the work of [5] for both the entity and the relation extraction mod-
ules. Moreover, as an interesting follow-up experiment, we could stack an
additional layer of NER (either softmax or CRF layer) on top of the relation
module to get direct feedback from the relation extraction layer. In addi-
tion, we are planning to explore a way to reduce the calculations in the
quadratic relation scoring layer. For instance, a straightforward way to do
so is to use in the sigmoid layer only the tokens that have been identified
as entities.

Appendix

In this section, we report additional results for our multi-head selection
framework. Specifically, we (i) compare our model with the model of [19]
(i.e., optimize only over the NER task), (ii) explore several hyperparame-
ters of the network (e.g., dropout, LSTM size, character embeddings size),
and (iii) report F1 score using different word embeddings compared to the
embeddings used in previous works.

JOINT ENTITY RECOGNITION AND RELATION EXTRACTION 103

In Table 4A.1 of the main paper, we focused on comparing our model
against other joint models that are able to solve the two tasks (i.e., NER
and relation extraction) simultaneously, mainly demonstrating superiority
of phrasing the relation extraction as a multi-head selection problem (en-
abling the extraction of multiple relations at once). Here, in Table 4A.3,
we evaluate the performance of just the first module of our joint multi-
head model: we compare the performance of the NER component of our
model against the state-of-the-art NER model of [19]. The results indicate
a marginal performance improvement of our model over Lample’s NER
baseline in 3 out of 4 datasets. The improvement of our model’s NER part
is not substantial, since (i) our NER part is almost identical to Lample’s,
and (ii) recent advances in NER performance among neural systems are
relatively small (improvements in the order of few 0.1 F1 points – for in-
stance, the contribution of [20] and [19] on the CoNLL-2003 test set is 0.01%
and 0.17% F1 points, respectively). This slight improvement suggests that
the interaction of the two components by sharing the underlying LSTM
layer is indeed beneficial (e.g., identifying a Works for relation might be
helpful for the NER module in detecting the type of the two entities, i.e.,
PER, ORG and vice versa). Note that improving NER in isolation was not
the objective of our multi-head model, but we rather aimed to compare
our model against other joint models that solve the task of entity recog-
nition and relation identification simultaneously. We thus did not envision
to claim or achieve state-of-the-art performance in each of the individual
building blocks of our joint model.

Tables 4A.4, 4A.5 and 4A.6 show the performance of our model on the
test set for different values of the embedding dropout, LSTM layer dropout
and the LSTM output dropout hyperparameters, respectively. Note that
the hyperparameter values used for the results in Section 4A.5 were ob-
tained by tuning over the development set, and these are indicated in bold
face in the tables below. We vary one hyperparameter at a time in order to
assess the effect of a particular hyperparameter. The main outcomes from
these tables are twofold: (i) low dropout values (e.g., 0, 0.1) lead to a per-
formance decrease in the overall F1 score (see Table 4A.5 where a ∼3% F1
decrease is reported on the ACE04 dataset) and (ii) average dropout values
(i.e., 0.2-0.4) lead to consistently similar results.

In Tables 4A.7, 4A.8, 4A.9 and 4A.10, we report results for different val-
ues of the LSTM size, the size of the character embeddings, the size of the
label embeddings and the layer width of the neural network l (both for the
entity and the relation scoring layers), respectively. The reported results
show that different hyperparameters settings do lead to noticeable perfor-
mance differences, but we do not observe any clear trend. Moreover, we

104 CHAPTER 4

have not observed any significant performance improvement that affects
the overall ranking of the models as reported in Table 4A.1. On the other
hand, the results indicate that increasing (character and label) embedding
size and layer dimensions leads to a slight decrease in performance for
the CoNLL04 dataset. This can be explained by the fact that the CoNLL04
dataset is relatively small and using more trainable model parameters (i.e.,
larger hyperparameter values) can make our multi-head selection method
to overfit quickly on the training set. In almost any other case, variation
of the hyperparameters does not affect the ranking of the models reported
in Table 4A.1.

Table 4A.3: Comparison of the multi-head selection model (only the NER compo-
nent) against the NER baseline of [19]. Bold font indicates the best re-
sults for each dataset.

Entity
Model P R F1

ACE
04

NER baseline 81.0 81.1 81.1
multi-head 81.0 81.3 81.1

CoNLL
04

NER baseline 84.3 83.1 83.7
multi-head 83.7 84.0 83.9

DREC
NER baseline 78.2 84.8 81.4

multi-head 78.9 83.9 81.3

ADE
NER baseline 83.9 88.5 86.2

multi-head 84.7 88.1 86.4

Table 4A.4: Model performance for different embedding dropout values. Bold en-
tries indicate the result reported in Section 4A.5.

Embedding Entity Relation
Dropout P R F1 P R F1 Overall F1

A
C

E
04

0.5 80.6 81.0 80.8 47.6 43.2 45.3 63.1
0.4 80.9 81.3 81.1 49.9 43.5 46.5 63.8
0.3 81.0 81.3 81.1 50.1 44.4 47.1 64.1
0.2 81.1 81.5 81.3 49.8 42.4 45.8 63.5
0.1 80.8 81.0 80.9 47.7 42.9 45.2 63.0
0 80.2 80.4 80.3 47.0 43.5 45.2 62.7

C
oN

LL
04

0.5 82.5 83.6 83.0 69.2 52.3 59.6 71.3
0.4 83.6 83.0 83.3 65.1 51.4 57.4 70.4
0.3 82.1 84.2 83.2 64.7 57.8 61.0 72.1
0.2 84.0 84.6 84.3 71.9 54.7 62.1 73.2
0.1 83.7 84.0 83.9 63.7 60.4 62.0 72.9
0 82.7 84.7 83.7 66.2 56.6 61.0 72.3

D
R

EC

0.5 78.1 84.5 81.2 51.1 53.8 52.4 66.8
0.4 78.4 84.7 81.4 51.8 53.5 52.7 67.1
0.3 78.9 83.9 81.3 50.0 54.7 52.2 66.8
0.2 78.1 84.1 81.0 51.6 54.1 52.8 66.9
0.1 78.8 83.3 81.0 49.3 52.6 50.9 66.0
0 78.4 82.3 80.3 50.6 52.6 51.5 65.9

A
D

E

0.5 84.7 88.6 86.6 72.6 78.8 75.6 81.1
0.4 84.5 88.2 86.3 71.9 77.9 74.8 80.5
0.3 84.7 88.1 86.4 72.1 77.2 74.5 80.4
0.2 84.6 87.9 86.2 72.3 77.3 74.8 80.5
0.1 85.1 87.4 86.2 72.9 76.7 74.7 80.5
0 83.6 87.0 85.3 71.0 75.9 73.4 79.3

JOINT ENTITY RECOGNITION AND RELATION EXTRACTION 105

Table 4A.5: Model performance for different LSTM layer dropout values. Bold en-
tries indicate the result reported in Section 4A.5.

LSTM Entity Relation
Dropout P R F1 P R F1 Overall F1

A
C

E
04

0.5 80.2 80.0 80.1 48.2 38.8 43.0 61.6
0.4 81.1 81.3 81.2 50.5 42.0 45.9 63.5
0.3 81.1 81.6 81.4 50.3 44.1 47.0 64.2
0.2 81.0 81.3 81.1 50.1 44.4 47.1 64.1
0.1 81.2 81.3 81.2 48.2 41.5 44.6 62.9
0 80.5 79.9 80.2 46.7 39.3 42.7 61.4

C
oN

LL
04

0.5 84.1 86.2 85.2 59.3 60.1 59.7 72.4
0.4 84.4 85.4 84.9 63.7 62.5 63.1 74.0
0.3 86.4 85.7 86.0 65.1 60.6 62.8 74.4
0.2 84.7 85.9 85.3 68.0 59.4 63.4 74.3
0.1 83.7 84.0 83.9 63.7 60.4 62.0 72.9
0 84.1 82.7 83.4 65.0 52.1 57.8 70.6

D
R

EC

0.5 77.7 84.8 81.1 49.4 53.6 51.4 66.3
0.4 78.6 83.9 81.2 50.6 54.6 52.5 66.8
0.3 78.9 83.9 81.3 50.0 54.7 52.2 66.8
0.2 77.8 83.6 80.6 49.2 53.7 51.3 66.0
0.1 78.9 83.6 81.2 51.3 53.1 52.2 66.7
0 78.5 80.1 79.3 50.3 49.9 50.1 64.7

A
D

E

0.5 85.0 88.2 86.6 72.7 78.1 75.3 80.9
0.4 84.6 88.3 86.4 72.2 78.0 74.9 80.7
0.3 84.6 88.6 86.5 72.2 78.8 75.3 80.9
0.2 84.7 88.1 86.4 72.1 77.2 74.5 80.4
0.1 84.3 87.9 86.1 72.0 77.5 74.6 80.4
0 83.8 87.6 85.6 70.5 76.9 73.6 79.6

Table 4A.6: Model performance for different LSTM output dropout values. Bold
entries indicate the best result reported in Section 4A.5.

LSTM output Entity Relation
Dropout P R F1 P R F1 Overall F1

A
C

E
04

0.5 81.2 81.7 81.5 51.1 41.9 46.0 63.8
0.4 81.2 81.7 81.4 51.4 42.7 46.7 64.0
0.3 81.3 81.7 81.5 48.6 44.2 46.3 63.9
0.2 81.0 81.3 81.1 50.1 44.4 47.1 64.1
0.1 81.0 81.1 81.0 47.5 42.8 45.0 63.0
0 80.1 80.6 80.3 47.2 40.5 43.6 62.0

C
oN

LL
04

0.5 85.8 86.8 86.3 64.1 59.0 61.4 73.9
0.4 83.2 84.8 84.08 66.0 61.3 63.6 73.8
0.3 85.1 84.8 85.0 64.8 55.4 59.7 72.3
0.2 84.1 84.5 84.3 66.0 57.5 61.5 72.9
0.1 83.7 84.0 83.9 63.7 60.4 62.0 72.9
0 83.6 84.8 84.2 65.2 53.7 58.9 71.6

D
R

EC

0.5 78.7 84.2 81.3 51.2 52.6 51.9 66.6
0.4 78.4 85.2 81.6 50.3 55.4 52.7 67.2
0.3 78.9 83.9 81.3 50.0 54.7 52.2 66.8
0.2 77.8 84.6 81.1 51.0 54.1 52.5 66.8
0.1 78.8 83.7 81.2 51.7 54.7 53.2 67.2
0 77.6 83.8 80.6 51.1 51.3 51.2 65.9

A
D

E

0.5 84.3 87.9 86.1 71.5 77.2 74.2 80.2
0.4 85.1 88.1 86.6 72.8 77.8 75.2 80.9
0.3 84.2 88.0 86.1 71.8 77.4 74.5 80.3
0.2 84.7 88.1 86.4 72.1 77.2 74.5 80.4
0.1 84.6 88.0 86.3 72.3 77.4 74.8 80.5
0 84.4 88.1 86.2 71.6 77.8 74.6 80.4

106 CHAPTER 4

Table 4A.7: Model performance for different LSTM size values. Bold entries indi-
cate the result reported in Section 4A.5.

LSTM Entity Relation
Size P R F1 P R F1 Overall F1

A
C

E
04

32 80.9 81.2 81.1 50.3 42.6 46.1 63.6
64 81.0 81.3 81.1 50.1 44.4 47.1 64.1

128 80.3 80.8 80.5 47.3 41.7 44.3 62.4

C
oN

LL
04

32 82.8 83.1 82.9 65.7 58.2 61.8 72.3
64 83.7 84.0 83.9 63.7 60.4 62.0 72.9

128 82.4 83.0 82.7 64.8 53.7 58.8 70.7

D
R

EC

32 77.7 85.4 81.4 50.9 52.3 51.6 66.5
64 78.9 83.9 81.3 50.0 54.7 52.2 66.8

128 79.0 83.4 81.2 51.2 53.6 52.4 66.8

A
D

E 32 83.8 87.7 85.7 70.4 76.8 73.5 79.6
64 84.7 88.1 86.4 72.1 77.2 74.5 80.4

128 84.2 87.8 86.0 71.3 76.7 73.9 80.0

Table 4A.8: Model performance for different character embeddings size values.
Bold entries indicate the result reported in Section 4A.5.

Character Entity Relation
Embeddings P R F1 P R F1 Overall F1

A
C

E
04

15 81.0 81.5 81.2 47.8 44.7 46.2 63.7
25 81.0 81.3 81.1 50.1 44.4 47.1 64.1
50 81.3 81.5 81.4 49.7 44.0 46.7 64.0

C
oN

LL
04

15 83.3 84.3 83.8 66.0 57.1 61.2 72.5
25 83.7 84.0 83.9 63.7 60.4 62.0 72.9
50 85.1 82.9 84.0 59.8 52.6 55.9 70.0

D
R

EC

15 79.7 84.1 81.8 52.5 55.3 53.8 67.8
25 78.9 83.9 81.3 50.0 54.7 52.2 66.8
50 78.0 84.8 81.3 51.0 54.2 52.6 66.9

A
D

E 15 84.8 88.0 86.3 72.7 77.5 75.0 80.7
25 84.7 88.1 86.4 72.1 77.2 74.5 80.4
50 84.6 88.0 86.3 72.1 77.4 74.7 80.5

Table 4A.9: Model performance for different label embeddings size values. Bold
entries indicate the result reported in Section 4A.5.

Label Entity Relation
Embeddings P R F1 P R F1 Overall F1

A
C

E
04

15 80.9 81.2 81.1 49.2 43.8 46.3 63.7
25 81.0 81.3 81.1 50.1 44.4 47.1 64.1
50 81.1 81.6 81.3 48.0 44.4 46.1 63.7

C
oN

LL
04

15 84.6 83.5 84.0 62.2 56.1 59.0 71.5
0 83.7 84.0 83.9 63.7 60.4 62.0 72.9

50 82.3 84.1 83.2 59.3 55.9 57.5 70.3

D
R

EC

15 78.4 84.8 81.5 51.8 53.2 52.5 67.0
25 78.9 83.9 81.3 50.0 54.7 52.2 66.8
50 78.9 84.8 81.7 51.3 53.2 52.2 67.0

A
D

E 15 84.4 88.1 86.2 71.9 77.4 74.6 80.4
25 84.7 88.1 86.4 72.1 77.2 74.5 80.4
50 84.8 88.6 86.6 72.4 78.6 75.4 81.0

JOINT ENTITY RECOGNITION AND RELATION EXTRACTION 107

Table 4A.10: Model performance for different layer widths l of the neural network
(both for the entity and the relation scoring layers). Bold entries indi-
cate the result reported in Section 4A.5.

Hidden layer Entity Relation
Size P R F1 P R F1 Overall F1

A
C

E
04

32 81.0 81.0 81.0 48.8 43.2 45.8 63.4
64 81.0 81.3 81.1 50.1 44.4 47.1 64.1

128 81.3 81.3 81.3 51.5 43.6 47.3 64.3

C
oN

LL
04

32 82.2 84.2 83.2 65.9 59.2 62.4 72.8
64 83.7 84.0 83.9 63.7 60.4 62.0 72.9

128 82.6 83.6 83.1 64.4 55.4 59.6 71.4

D
R

EC

32 79.6 84.2 81.8 52.4 51.4 51.9 66.9
64 78.9 83.9 81.3 50.0 54.7 52.2 66.8

128 78.3 84.4 81.3 48.5 53.0 50.7 66.0

A
D

E 32 84.3 88.5 86.3 71.6 78.5 74.9 80.6
64 84.7 88.1 86.4 72.1 77.2 74.5 80.4

128 84.8 88.5 86.6 72.2 78.2 75.1 80.8

Table 4A.11: Model performance for different embeddings on the ACE04 dataset.
Bold entries indicate the result reported in Section 4A.5.

Embeddings Size Entity Relation
P R F1 P R F1 Overall F1

Miwa & Bansal (2016) [5] 200 81.0 81.3 81.1 50.1 44.4 47.1 64.1
Adel & Schütze [8] 50 82.1 79.8 80.9 49.1 41.4 44.9 62.9
Li et al. (2017) [6] 200 81.5 81.3 81.4 46.5 44.4 45.4 63.4

In the main results (see Section 4A.5), to guarantee a fair comparison
to previous work and to obtain comparable results that are not affected by
the input embeddings, we use embeddings used also in prior studies. To
assess the performance of our system to input variations, we also report
results using different word embeddings (see Table 4A.11) (i.e., [6, 8]) on
the ACE04 dataset. Our results showcase that our model, even when using
different word embeddings, is still performing better compared to other
works that, like ours, do not rely on additional NLP tools. The main goal of
this appendix was to demonstrate that even with different hyperparameter
values, different embeddings, the performance of our model does not vary
a lot (i.e., ∼ 1% F1 scoring points depending on the size of each dataset).

References

[1] D. Nadeau and S. Sekine. A survey of named entity recognition
and classification. Lingvisticae Investigationes, 30(1):3–26, 2007.
doi:10.1075/li.30.1.03nad.

[2] N. Bach and S. Badaskar. A review of relation extraction. Literature
review for Language and Statistics II, 2007.

108 CHAPTER 4

[3] Q. Li and H. Ji. Incremental Joint Extraction of Entity Mentions and Rela-
tions. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 402–
412, Baltimore, USA, 23–25 Jun. 2014.

[4] M. Miwa and Y. Sasaki. Modeling Joint Entity and Relation Extrac-
tion with Table Representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing, pages 1858–
1869, Doha, Qatar, 25–29 Oct. 2014. Association for Computational
Linguistics.

[5] M. Miwa and M. Bansal. End-to-End Relation Extraction using LSTMs
on Sequences and Tree Structures. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1105–1116, Berlin, Germany, 7–12 Aug. 2016.

[6] F. Li, M. Zhang, G. Fu, and D. Ji. A neural joint model for entity and
relation extraction from biomedical text. BMC Bioinformatics, 18(1):1–11,
2017. doi:10.1186/s12859-017-1609-9.

[7] P. Gupta, H. Schütze, and B. Andrassy. Table filling multi-task recurrent
neural network for joint entity and relation extraction. In Proceedings of
COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers, pages 2537–2547, 2016.

[8] H. Adel and H. Schütze. Global Normalization of Convolutional Neural
Networks for Joint Entity and Relation Classification. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language
Processing, Copenhagen, Denmark, September 2017. Association for
Computational Linguistics.

[9] A. Katiyar and C. Cardie. Going out on a limb: Joint Extraction of Entity
Mentions and Relations without Dependency Trees. In Proceedings of the
55st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Vancouver, Canada, 2017.

[10] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. An attentive
neural architecture for joint segmentation and parsing and its application
to real estate ads. Expert Systems with Applications, 102:100–112, 2018.
doi:10.1016/j.eswa.2018.02.031.

[11] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. Reconstructing
the house from the ad: Structured prediction on real estate classifieds. In
Proceedings of the 15th Conference of the European Chapter of the

JOINT ENTITY RECOGNITION AND RELATION EXTRACTION 109

Association for Computational Linguistics: (Volume 2, Short Papers),
pages 274–279, Valencia, Spain, 3–7 Apr. 2017.

[12] K. Fundel, R. Küffner, and R. Zimmer. RelEx-Relation extraction
using dependency parse trees. Bioinformatics, 23(3):365–371, 2007.
doi:10.1093/bioinformatics/btl616.

[13] H. Gurulingappa, A. Mateen-Rajpu, and L. Toldo. Extraction of poten-
tial adverse drug events from medical case reports. Journal of Biomedical
Semantics, 3(1):1–15, 2012. doi:10.1186/2041-1480-3-15.

[14] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. In Proceedings
of the 18th International Conference on Machine Learning, pages 282–
289, San Francisco, USA, 28 Jun.–1 Jul. 2001. Morgan Kaufmann.

[15] B. Taskar, C. Guestrin, and D. Koller. Max-Margin Markov networks. In
Proceedings of the 16th International Conference on Neural Informa-
tion Processing Systems, pages 25–32. MIT Press, Bangkok, Thailand,
1–5 Dec. 2003.

[16] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Sup-
port Vector Machine Learning for Interdependent and Structured Output
Spaces. In Proceedings of the 21st International Conference on Ma-
chine Learning, pages 104–112, Helsinki, Finland, 5–9 Jul. 2004. ACM.
doi:10.1145/1015330.1015341.

[17] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa. Natural Language Processing (Almost) from Scratch. Journal of
Machine Learning Research, 12:2493–2537, November 2011.

[18] Z. Huang, W. Xu, and K. Yu. Bidirectional LSTM-CRF models for se-
quence tagging. arXiv preprint arXiv:1508.01991, 2015.

[19] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and
C. Dyer. Neural Architectures for Named Entity Recognition. In Proceed-
ings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies, pages 260–270, San Diego, California, 12–17 Jun. 2016.

[20] X. Ma and E. Hovy. End-to-end Sequence Labeling via Bi-directional
LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
pages 1064–1074, Berlin, Germany, 7–12 Aug. 2016.

110 CHAPTER 4

[21] D. Zelenko, C. Aone, and A. Richardella. Kernel Methods for Relation
Extraction. Journal of Machine Learning Research, 3:1083–1106, 2003.
doi:10.3115/1118693.1118703.

[22] N. Kambhatla. Combining lexical, syntactic, and semantic features with
maximum entropy models for extracting relations. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics on
Interactive poster and demonstration sessions, Barcelona, Spain, 2004.
doi:10.3115/1219044.1219066.

[23] R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. Semantic composi-
tionality through recursive matrix-vector spaces. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pages
1201–1211, Jeju Island, Korea, 12–14 Jul. 2012. Association for Com-
putational Linguistics.

[24] D. Zeng, K. Liu, S. Lai, G. Zhou, and J. Zhao. Relation classification via
convolutional deep neural network. In Proceedings of COLING 2014, the
25th International Conference on Computational Linguistics: Techni-
cal Papers, pages 2335–2344, 2014.

[25] A. Culotta and J. Sorensen. Dependency tree kernels for relation ex-
traction. In Proceedings of the 42nd Annual Meeting on Association
for Computational Linguistics, pages 423–429, Barcelona, Spain, 2004.
doi:10.3115/1218955.1219009.

[26] B. Rink and S. Harabagiu. Utd: Classifying semantic relations by com-
bining lexical and semantic resources. In Proceedings of the 5th Interna-
tional Workshop on Semantic Evaluation, pages 256–259, Los Ange-
les, California, 2010. Association for Computational Linguistics.

[27] K. Xu, Y. Feng, S. Huang, and D. Zhao. Semantic Relation Classifica-
tion via Convolutional Neural Networks with Simple Negative Sampling.
In Proceedings of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 536–540, Lisbon, Portugal, Septem-
ber 2015. Association for Computational Linguistics. Available from:
http://aclweb.org/anthology/D15-1062.

[28] C. dos Santos, B. Xiang, and B. Zhou. Classifying Relations by Ranking
with Convolutional Neural Networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 626–634, Beijing, China, 26–31 Jul. 2015.

http://aclweb.org/anthology/D15-1062

JOINT ENTITY RECOGNITION AND RELATION EXTRACTION 111

[29] R. Socher, D. Chen, C. D. Manning, and A. Ng. Reasoning With Neural
Tensor Networks for Knowledge Base Completion. In Proceedings of the
26th International Conference on Neural Information Processing Sys-
tems, pages 926–934, Nevada, United States, 5–10 Dec. 2013. Curran
Associates, Inc.

[30] D. Zhang and D. Wang. Relation classification via recurrent neural net-
work. arXiv preprint arXiv:1508.01006, 2015.

[31] Y. Xu, L. Mou, G. Li, Y. Chen, H. Peng, and Z. Jin. Classifying Relations
via Long Short Term Memory Networks along Shortest Dependency Paths.
In Proceedings of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1785–1794, Lisbon, Portugal, 17–21
Sept. 2015. Association for Computational Linguistics.

[32] N. T. Vu, H. Adel, P. Gupta, and H. Schütze. Combining Recurrent and
Convolutional Neural Networks for Relation Classification. In Proceed-
ings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies, pages 534–539, San Diego, California, June 2016. Available
from: http://www.aclweb.org/anthology/N16-1065.

[33] R. J. Kate and R. Mooney. Joint Entity and Relation Extraction Using
Card-Pyramid Parsing. In Proceedings of the 14th Conference on Com-
putational Natural Language Learning, pages 203–212, Uppsala, Swe-
den, 15–16 Jul. 2010. Association for Computational Linguistics.

[34] B. Yang and C. Cardie. Joint Inference for Fine-grained Opinion Extrac-
tion. In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1640–
1649, Sofia, Bulgaria, August 2013. Available from: http://www.
aclweb.org/anthology/P13-1161.

[35] S. Zheng, Y. Hao, D. Lu, H. Bao, J. Xu, H. Hao, and B. Xu. Joint entity
and relation extraction based on a hybrid neural network. Neurocomput-
ing, 257:59–66, 2017. doi:10.1016/j.neucom.2016.12.075.

[36] X. Zhang, J. Cheng, and M. Lapata. Dependency Parsing as Head Selec-
tion. In Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: (Volume 1, Long
Papers), pages 665–676, Valencia, Spain, 3–7 Apr. 2017.

[37] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Dis-
tributed Representations of Words and Phrases and their Compositionality.

http://www.aclweb.org/anthology/N16-1065
http://www.aclweb.org/anthology/P13-1161
http://www.aclweb.org/anthology/P13-1161

112 CHAPTER 4

In Proceedings of the 26th International Conference on Neural Infor-
mation Processing Systems, pages 3111–3119, Nevada, United States,
5–10 Dec. 2013. Curran Associates, Inc.

[38] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to Sequence Learning
with Neural Networks. In Proceedings of the 27th International Con-
ference on Neural Information Processing Systems, pages 3104–3112,
Montreal, Canada, 08–13 Dec. 2014. MIT Press.

[39] Y. Bengio, P. Simard, and P. Frasconi. Learning Long-term Dependencies
with Gradient Descent is Difficult. Transactions on neural networks,
5(2):157–166, 1994. doi:10.1109/72.279181.

[40] R. Pascanu, T. Mikolov, and Y. Bengio. On the Difficulty of Training
Recurrent Neural Networks. In Proceedings of the 30th International
Conference on International Conference on Machine Learning, pages
1310–1318, Atlanta, USA, 16–21 Jun. 2013. JMLR.org.

[41] Y.-J. Chu and T.-H. Liu. On shortest arborescence of a directed graph.
Scientia Sinica, 14:1396–1400, 1965.

[42] J. Edmonds. Optimum branchings. Journal of research of the National
Bureau of Standards, 71B(4):233–240, 1967.

[43] G. R. Doddington, A. Mitchell, M. A. Przybocki, L. A. Ramshaw,
S. Strassel, and R. M. Weischedel. The Automatic Content Extraction
(ACE) Program-Tasks, Data, and Evaluation. In Proceedings Fourth In-
ternational Conference on Language Resources and Evaluation, vol-
ume 2, page 1, Lisbon, Portugal, 2004.

[44] H. Gurulingappa, A. M. Rajput, A. Roberts, J. Fluck, M. Hofmann-
Apitius, and L. Toldo. Development of a benchmark corpus to sup-
port the automatic extraction of drug-related adverse effects from medical
case reports. Journal of Biomedical Informatics, 45(5):885–892, 2012.
doi:10.1016/j.jbi.2012.04.008.

[45] D. Roth and W.-t. Yih. A Linear Programming Formulation for Global
Inference in Natural Language Tasks. In HLT-NAACL 2004 Work-
shop: Eighth Conference on Computational Natural Language Learn-
ing (CoNLL-2004), pages 1–8, Boston, USA, 2004. Association for
Computational Linguistics. Available from: http://www.aclweb.
org/anthology/W04-2401.

[46] F. Li, Y. Zhang, M. Zhang, and D. Ji. Joint Models for Extracting Adverse
Drug Events from Biomedical Text. In Proceedings of the Twenty-Fifth

http://www.aclweb.org/anthology/W04-2401
http://www.aclweb.org/anthology/W04-2401

JOINT ENTITY RECOGNITION AND RELATION EXTRACTION 113

International Joint Conference on Artificial Intelligence, pages 2838–
2844, New York, USA, 9–15 Jul. 2016. IJCAI/AAAI Press.

[47] S. Moen and T. S. S. Ananiadou. Distributional semantics resources for
biomedical text processing. In Proceedings of the 5th International Sym-
posium on Languages in Biology and Medicine, pages 39–43, Tokyo,
Japan, 2013.

[48] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A System for Large-scale Ma-
chine Learning. In Proceedings of the 12th USENIX Conference on Op-
erating Systems Design and Implementation, pages 265–283, Berkeley,
CA, USA, 2016.

[49] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In In-
ternational Conference on Learning Representations, San Diego, USA,
2015.

[50] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov. Dropout: A Simple Way to Prevent Neural Networks from Overfit-
ting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

4B
Adversarial training for

multi-context joint entity and
relation extraction

In this chapter, we explain how adversarial perturbations can be applied on top
of our joint model (described in Chapter 4A) to improve the performance of the
named entity recognition and relation extraction tasks. The core contribution of
this chapter is the use of adversarial perturbations as an extension in the training
procedure for the joint extraction task. Experimental results illustrate that adver-
sarial perturbations improve the performance of the joint model, not only (i) in
terms of overall performance, but also (ii) in terms of performance for each task
separately, and (iii) even from the first training epochs onwards.

? ? ?

G. Bekoulis, J. Deleu, T. Demeester and C. Develder

In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, 2018.

Abstract Adversarial training (AT) is a regularization method that can be
used to improve the robustness of neural network methods by adding

116 CHAPTER 4

small perturbations in the training data. We show how to use AT for the
tasks of entity recognition and relation extraction. In particular, we demon-
strate that applying AT to a general purpose baseline model for jointly
extracting entities and relations, allows improving the state-of-the-art ef-
fectiveness on several datasets in different contexts (i.e., news, biomedical,
and real estate data) and for different languages (English and Dutch).

4B.1 Introduction

Many neural network methods have recently been exploited in various
natural language processing (NLP) tasks, such as parsing [1], POS tag-
ging [2], relation extraction [3], translation [4], and joint tasks [5]. How-
ever, Szegedy et al. [6] observed that intentional small scale perturbations
(i.e., adversarial examples) to the input of such models may lead to incor-
rect decisions (with high confidence). Goodfellow et al. [7] proposed ad-
versarial training (AT) (for image recognition) as a regularization method
which uses a mixture of clean and adversarial examples to enhance the
robustness of the model. Although AT has recently been applied in NLP
tasks (e.g., text classification [8]), this paper — to the best of our knowl-
edge — is the first attempt investigating regularization effects of AT in a
joint setting for two related tasks.

We start from a baseline joint model that performs the tasks of named
entity recognition (NER) and relation extraction at once. Previously pro-
posed models (summarized in Section 4B.2) exhibit several issues that the
neural network-based baseline approach (detailed in Section 4B.3.1) over-
comes: (i) our model uses automatically extracted features without the
need of external parsers nor manually extracted features (see [5, 9, 10]),
(ii) all entities and the corresponding relations within the sentence are ex-
tracted at once, instead of examining one pair of entities at a time (see [11]),
and (iii) we model relation extraction in a multi-label setting, allowing mul-
tiple relations per entity (see [12, 13]). The core contribution of the paper is
the use of AT as an extension in the training procedure for the joint extrac-
tion task (Section 4B.3.2).

To evaluate the proposed AT method, we perform a large scale exper-
imental study in this joint task (see Section 4B.4), using datasets from dif-
ferent contexts (i.e., news, biomedical, real estate) and languages (i.e., Eng-
lish, Dutch). We use a strong baseline that outperforms all previous mod-
els that rely on automatically extracted features, achieving state-of-the-art
performance (Section 4B.5). Compared to the baseline model, applying AT
during training leads to a consistent additional increase in joint extraction
effectiveness.

ADVERSARIAL TRAINING FOR ENTITY AND RELATION EXTRACTION 117

Smith lives in California

Word/Character
 Embeddings

BiLSTM

sigmoid

lives
N Relations

Heads California
N

in
N

O CRF Layer O O B-LOC

.

Label
Embeddings

LSTM

B-PER

California
Lives in

.

LSTM LSTM LSTM LSTM

η4 η0 η1 η2 η3 perturbation

.
N

Figure 4B.1: Our model for joint entity and relation extraction with adversarial
training (AT) comprises (i) a word and character embedding layer, (ii)
a BiLSTM layer, (iii) a CRF layer and (iv) a relation extraction layer. In
AT, we compute the worst-case perturbations η of the input embed-
dings.

4B.2 Related work

Joint entity and relation extraction: Joint models [14, 15] that are based on
manually extracted features have been proposed for performing both the
named entity recognition (NER) and relation extraction subtasks at once.
These methods rely on the availability of NLP tools (e.g., POS taggers)
or manually designed features leading to additional complexity. Neural
network methods have been exploited to overcome this feature design is-
sue and usually involve RNNs and CNNs [5, 16]. Specifically, Miwa and
Bansal [5] as well as Li et al. [10] apply bidirectional tree-structured RNNs
for different contexts (i.e., news, biomedical) to capture syntactic informa-
tion (using external dependency parsers). Gupta et al. [9] propose the
use of various manually extracted features along with RNNs. Adel and
Schütze [11] solve the simpler problem of entity classification (EC, assum-
ing entity boundaries are given), instead of NER, and they replicate the
context around the entities, feeding entity pairs to the relation extraction
layer. Katiyar and Cardie [12] investigate RNNs with attention without
taking into account that relation labels are not mutually exclusive. Finally,
Bekoulis et al. [13] use LSTMs in a joint model for extracting just one rela-

118 CHAPTER 4

tion at a time, but increase the complexity of the NER part. Our baseline
model enables simultaneous extraction of multiple relations from the same
input. Then, we further extend this strong baseline using adversarial train-
ing.

Adversarial training (AT) [7] has been proposed to make classifiers
more robust to input perturbations in the context of image recognition.
In the context of NLP, several variants have been proposed for different
tasks such as text classification [8], relation extraction [17] and POS tag-
ging [18]. AT is considered as a regularization method. Unlike other reg-
ularization methods (i.e., dropout [19], word dropout [20]) that introduce
random noise, AT generates perturbations that are variations of examples
easily misclassified by the model.

4B.3 Model

4B.3.1 Joint learning as head selection

The baseline model, described in detail in [21], is illustrated in Fig. 4B.1.
It aims to detect (i) the type and the boundaries of the entities and (ii) the
relations between them. The input is a sequence of tokens (i.e., sentence)
w = w1, ..., wn. We use character level embeddings to implicitly capture
morphological features (e.g., prefixes and suffixes), representing each char-
acter by a vector (embedding). The character embeddings are fed to a bidi-
rectional LSTM (BiLSTM) to obtain the character-based representation of
the word. We also use pre-trained word embeddings. Word and character
embeddings are concatenated to form the final token representation, which
is then fed to a BiLSTM layer to extract sequential information.

For the NER task, we adopt the BIO (Beginning, Inside, Outside) en-
coding scheme. In Fig. 4B.1, the B-PER tag is assigned to the beginning
token of a ‘person’ (PER) entity. For the prediction of the entity tags, we
use: (i) a softmax approach for the entity classification (EC) task (assuming
entity boundaries given) or (ii) a CRF approach where we identify both the
type and the boundaries for each entity. During decoding, in the softmax
setting, we greedily detect the entity types of the tokens (i.e., independent
prediction). Although independent distribution of types is reasonable for
EC tasks, this is not the case when there are strong correlations between
neighboring tags. For instance, the BIO encoding scheme imposes several
constraints in the NER task (e.g., the B-PER and I-LOC tags cannot be se-
quential). Motivated by this intuition, we use a linear-chain CRF for the
NER task [2]. For decoding, in the CRF setting, we use the Viterbi algo-
rithm. During training, for both EC (softmax) and NER tasks (CRF), we

ADVERSARIAL TRAINING FOR ENTITY AND RELATION EXTRACTION 119

minimize the cross-entropy loss LNER. The entity tags are later fed into
the relation extraction layer as label embeddings (see Fig. 4B.1), assuming
that knowledge of the entity types is beneficial in predicting the relations
between the involved entities.

We model the relation extraction task as a multi-label head selection
problem [1, 21]. In our model, each word wi can be involved in multi-
ple relations with other words. For instance, in the example illustrated in
Fig. 4B.1, “Smith” could be involved not only in a Lives in relation with
the token “California” (head) but also in other relations simultaneously
(e.g., Works for, Born In with some corresponding tokens). The goal of the
task is to predict for each word wi, a vector of heads ŷi and the vector of
corresponding relations r̂i. We compute the score s(wj, wi, rk) of word wj
to be the head of wi given a relation label rk using a single layer neural
network. The corresponding probability is defined as: Pr

(
wj, rk

∣∣ wi; θ
)
=

σ(s(wj, wi, rk)), where σ(.) is the sigmoid function. During training, we
minimize the cross-entropy loss Lrel as:

n

∑
i=0

m

∑
j=0
− log Pr

(
yi,j, ri,j

∣∣ wi; θ
)

(4B.1)

where m is the number of associated heads (and thus relations) per word
wi. During decoding, the most probable heads and relations are selected
using threshold-based prediction. The final objective for the joint task is
computed as LJOINT(w; θ) = LNER + Lrel where θ is a set of parameters. In
the case of multi-token entities, only the last token of the entity can serve
as head of another token, to eliminate redundant relations. If an entity
is not involved in any relation, we predict the auxiliary “N” relation label
and the token itself as head. An additional batch normalization layer could
have been used, however we do not include it since it has not been used in
previous studies (see [2, 5, 22]).

4B.3.2 Adversarial training (AT)

We exploit the idea of AT [7] as a regularization method to make our model
robust to input perturbations. Specifically, we generate examples which
are variations of the original ones by adding some noise at the level of the
concatenated word representation [8]. This is similar to the concept in-
troduced by [7] to improve the robustness of image recognition classifiers.
We generate an adversarial example by adding the worst-case perturbation
ηadv to the original embedding w that maximizes the loss function:

ηadv = argmax
‖η‖≤ε

LJOINT(w + η; θ̂) (4B.2)

120 CHAPTER 4

where θ̂ is a copy of the current model parameters. Since Eq. (4B.2) is in-
tractable in neural networks, we use the approximation proposed in [7]
defined as: ηadv = εg/ ‖g‖ , with g = ∇wLJOINT(w; θ̂), where ε is a small
bounded norm treated as a hyperparameter. Similar to [18], we set ε to
be α
√

D (where D is the dimension of the embeddings). We train on the
mixture of original and adversarial examples, so the final loss is computed
as: LJOINT(w; θ̂) + LJOINT(w + ηadv; θ̂).

4B.4 Experimental setup

We evaluate our models on four datasets, using the code as available from
our Github codebase.1 Specifically, we follow the 5-fold cross-validation
defined by [5] for the ACE04 [23] dataset. For the CoNLL04 [24] EC task
(assuming boundaries are given), we use the same splits as in [9, 11]. We
also evaluate our models on the NER task similar to [15] in the same dataset
using 10-fold cross validation. For the Dutch Real Estate Classifieds, DREC [25]
dataset, we use train-test splits as in [13]. For the Adverse Drug Events,
ADE [26], we perform 10-fold cross-validation similar to [10]. To obtain
comparable results that are not affected by the input embeddings, we use
the embeddings of the previous works. We employ early stopping in all of
the experiments. We use the Adam optimizer [27] and we fix the hyper-
parameters (i.e., α, dropout values, best epoch, learning rate) on the vali-
dation sets. The scaling parameter α is selected from {5× 10−2, 1× 10−2,
1× 10−3, 1× 10−4}. Larger values of α (i.e., larger perturbations) lead to
consistent performance decrease in our early experiments. This can be ex-
plained from the fact that adding more noise can change the content of the
sentence as also reported by [17].

We use three types of evaluation, namely: (i) S(trict): we score an en-
tity as correct if both the entity boundaries and the entity type are correct
(ACE04, ADE, CoNLL04, DREC), (ii) B(oundaries): we score an entity as
correct if only the entity boundaries are correct while the entity type is not
taken into account (DREC) and (iii) R(elaxed): a multi-token entity is con-
sidered correct if at least one correct type is assigned to the tokens com-
prising the entity, assuming that the boundaries are known (CoNLL04), to
compare to previous works. In all cases, a relation is considered as correct
when both the relation type and the argument entities are correct.

1https://github.com/bekou/multihead_joint_entity_relation_extraction

https://github.com/bekou/multihead_joint_entity_relation_extraction

ADVERSARIAL TRAINING FOR ENTITY AND RELATION EXTRACTION 121

Table 4B.1: Comparison of our method with the state-of-the-art in terms of F1 score.
The proposed models are: (i) baseline, (ii) baseline EC (predicts only en-
tity classes) and (iii) baseline (EC) + AT (regularized by AT). The 3and
7 symbols indicate whether the models rely on external NLP tools. We
include different evaluation types (S, R and B). Note that confidence
intervals for each dataset are reported in Fig. 4B.2.

Settings Features Eval. Entity Relation Overall

A
C

E
04

Miwa & Bansal (2016) [5] 3 S 81.8 48.4 65.1
Katiyar and Cardie (2017) [12] 7 S 79.6 45.7 62.6

baseline 7 S 81.1 47.1 64.1
baseline + AT 7 S 81.6 47.4 64.5

C
oN

LL
04

Gupta et al. (2016) [9] 3 R 92.4 69.9 81.1
Gupta et al. (2016) [9] 7 R 88.8 58.3 73.6
Adel & Schütze [11] 7 R 82.1 62.5 72.3

baseline EC 7 R 93.2 67.0 80.1
baseline EC + AT 7 R 93.0 67.9 80.5

Miwa & Sasaki (2014) [15] 3 S 80.7 61.0 70.8
baseline 7 S 83.0 61.0 72.0

baseline + AT 7 S 83.6 61.9 72.7

D
R

EC

Bekoulis et al. (2018a) [13] 7 B 79.1 49.7 64.4
baseline 7 B 82.3 52.8 67.5

baseline + AT 7 B 82.9 53.8 68.4
baseline 7 S 81.3 52.2 66.8

baseline + AT 7 S 82.0 53.1 67.5

A
D

E

Li et al. (2016) [28] 3 S 79.5 63.4 71.4
Li et al. (2017) [10] 3 S 84.6 71.4 78.00

baseline 7 S 86.4 74.5 80.4
baseline + AT 7 S 86.7 75.5 81.1

ACE04

40 80 120 160

62

63

64

Number of epochs

F
1

P
er

fo
rm

an
ce

Adversarial
Baseline

CoNLL04

100 200 300

64

66

68

Number of epochs

F
1

P
er

fo
rm

an
ce

Adversarial
Baseline

DREC

25 50 75
60

62

64

66

Number of epochs

F
1

P
er

fo
rm

an
ce

Adversarial
Baseline

ADE

50 100 150

80.1

80.4

80.7

81.0

81.3

Number of epochs

F
1

P
er

fo
rm

an
ce

Adversarial
Baseline

Figure 4B.2: F1 performance of the baseline and the AT models on the valida-
tion sets from 10-30 epochs onwards depending on the dataset. The
smoothed lines (obtained by LOWESS smoothing) model the trends
and the 95% confidence intervals.

122 CHAPTER 4

4B.5 Results

Table 4B.1 shows our experimental results. The name of the dataset is pre-
sented in the first column while the models are listed in the second column.
The proposed models are the following: (i) baseline: the baseline model
shown in Fig. 4B.1 with the CRF layer and the sigmoid loss, (ii) baseline EC:
the proposed model with the softmax layer for EC, (iii) baseline (EC) + AT:
the baseline regularized using AT. The final three columns present the F1
results for the two subtasks and their average performance. Bold values in-
dicate the best results among models that use only automatically extracted
features.

For ACE04, the baseline outperforms [12] by ∼2% in both tasks. This
improvement can be explained by the use of: (i) multi-label head selection,
(ii) CRF-layer and (iii) character level embeddings. Compared to Miwa
and Bansal [5], who rely on NLP tools, the baseline performs within a rea-
sonable margin (less than 1%) on the joint task. On the other hand, Li et
al. [10] use the same model for the ADE biomedical dataset, where we re-
port a 2.5% overall improvement. This indicates that NLP tools are not al-
ways accurate for various contexts. For the CoNLL04 dataset, we use two
evaluation settings. We use the relaxed evaluation similar to [9, 11] on the
EC task. The baseline model outperforms the state-of-the-art models that
do not rely on manually extracted features (>4% improvement for both
tasks), since we directly model the whole sentence, instead of just consid-
ering pairs of entities. Moreover, compared to the model of [9] that relies
on complex features, the baseline model performs within a margin of 1% in
terms of overall F1 score. We also report NER results on the same dataset
and improve overall F1 score with ∼1% compared to [15], indicating that
our automatically extracted features are more informative than the hand-
crafted ones. These automatically extracted features exhibit their perfor-
mance improvement mainly due to the shared LSTM layer that learns to
automatically generate feature representations of entities and their corre-
sponding relations within a single model. For the DREC dataset, we use
two evaluation methods. In the boundaries evaluation, the baseline has an
improvement of ∼3% on both tasks compared to [13], whose quadratic
scoring layer complicates NER.

Table 4B.1 and Fig. 4B.2 show the effectiveness of the adversarial train-
ing on top of the baseline model. In all of the experiments, AT improves
the predictive performance of the baseline model in the joint setting. More-
over, as seen in Fig. 4B.2, the performance of the models using AT is closer
to maximum even from the early training epochs. Specifically, for ACE04,
there is an improvement in both tasks as well as in the overall F1 perfor-

ADVERSARIAL TRAINING FOR ENTITY AND RELATION EXTRACTION 123

mance (0.4%). For CoNLL04, we note an improvement in the overall F1 of
0.4% for the EC and 0.8% for the NER tasks, respectively. For the DREC
dataset, in both settings, there is an overall improvement of ∼1%. Fig-
ure 4B.2 shows that from the first epochs, the model obtains its maximum
performance on the DREC validation set. Finally, for ADE, our AT model
beats the baseline F1 by 0.7%.

Our results demonstrate that AT outperforms the neural baseline model
consistently, considering our experiments across multiple and more di-
verse datasets than typical related works. The improvement of AT over our
baseline (depending on the dataset) ranges from ∼0.4% to ∼0.9% in terms
of overall F1 score. This seemingly small performance increase is mainly
due to the limited performance benefit for the NER component, which is
in accordance with the recent advances in NER using neural networks that
report similarly small gains (e.g., the performance improvement in [22]
and [2] on the CoNLL-2003 test set is 0.01% and 0.17% F1 percentage points,
while in the work of [18], a 0.07% F1 improvement on CoNLL-2000 using
AT for NER is reported). However, the relation extraction performance in-
creases by ∼1% F1 scoring points, except for the ACE04 dataset. Further,
as seen in Fig. 4B.2, the improvement for CoNLL04 is particularly small
on the evaluation set. This may indicate a correlation between the dataset
size and the benefit of adversarial training in the context of joint models,
but this needs further investigation in future work. Thus, we hypothesize
that in a smaller dataset, less adversarial examples are being generated
compared to the adversarial examples generated for the rest of datasets
leading to a smaller increase in the F1 score.

4B.6 Conclusion

We proposed to use adversarial training (AT) for the joint task of entity
recognition and relation extraction. The contribution of this study is twofold:
(i) investigation of the consistent effectiveness of AT as a regularization
method over a multi-context baseline joint model, with (ii) a large scale ex-
perimental evaluation. Experiments show that AT improves the results for
each task separately, as well as the overall performance of the baseline joint
model, while reaching high performance already during the first epochs of
the training procedure.

124 CHAPTER 4

Acknowledgments

We would like to thank the anonymous reviewers for the time and effort
they spent in reviewing our work, and for their valuable feedback.

References

[1] X. Zhang, J. Cheng, and M. Lapata. Dependency Parsing as Head
Selection. In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: (Volume
1, Long Papers), pages 665–676, Valencia, Spain, 3–7 Apr. 2017.
doi:10.18653/v1/e17-1063.

[2] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and
C. Dyer. Neural Architectures for Named Entity Recognition. In Pro-
ceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, pages 260–270, San Diego, California, 12–17 Jun. 2016.
doi:10.18653/v1/n16-1030.

[3] C. dos Santos, B. Xiang, and B. Zhou. Classifying Relations by Ranking
with Convolutional Neural Networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 626–634, Beijing, China, 26–31 Jul. 2015.
doi:10.3115/v1/p15-1061.

[4] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by
jointly learning to align and translate. In Proceedings of the International
Conference for Learning Representations, San Diego, USA, 7–9 May
2015.

[5] M. Miwa and M. Bansal. End-to-End Relation Extraction using LSTMs
on Sequences and Tree Structures. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1105–1116, Berlin, Germany, 7–12 Aug. 2016.
doi:10.18653/v1/p16-1105.

[6] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus. Intriguing properties of neural networks. In
Proceedings of the International Conference on Learning Represen-
tations, Banff, Canada, 14–16 Apr. 2014.

ADVERSARIAL TRAINING FOR ENTITY AND RELATION EXTRACTION 125

[7] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing Ad-
versarial Examples. In Proceedings of the International Conference on
Learning Representations, San Diego, USA, 7–9 May 2015. Available
from: http://arxiv.org/abs/1412.6572.

[8] T. Miyato, A. M. Dai, and I. Goodfellow. Adversarial training methods
for semi-supervised text classification. In Proceedings of the International
Conference on Learning Representations, Toulon, France, 24–26 Apr.
2017.

[9] P. Gupta, H. Schütze, and B. Andrassy. Table filling multi-task recurrent
neural network for joint entity and relation extraction. In Proceedings of
COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers, pages 2537–2547, 2016.

[10] F. Li, M. Zhang, G. Fu, and D. Ji. A neural joint model for entity and
relation extraction from biomedical text. BMC Bioinformatics, 18(1):1–11,
2017. doi:10.1186/s12859-017-1609-9.

[11] H. Adel and H. Schütze. Global Normalization of Convolutional Neural
Networks for Joint Entity and Relation Classification. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language
Processing, Copenhagen, Denmark, September 2017. Association for
Computational Linguistics. doi:10.18653/v1/d17-1181.

[12] A. Katiyar and C. Cardie. Going out on a limb: Joint Extraction of
Entity Mentions and Relations without Dependency Trees. In Proceed-
ings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), Vancouver, Canada, 2017.
doi:10.18653/v1/p17-1085.

[13] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. An attentive
neural architecture for joint segmentation and parsing and its application
to real estate ads. Expert Systems with Applications, 102:100–112, 2018.
doi:10.1016/j.eswa.2018.02.031.

[14] Q. Li and H. Ji. Incremental Joint Extraction of Entity Mentions and Rela-
tions. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 402–
412, Baltimore, USA, 23–25 Jun. 2014. doi:10.3115/v1/p14-1038.

[15] M. Miwa and Y. Sasaki. Modeling Joint Entity and Relation Extrac-
tion with Table Representation. In Proceedings of the 2014 Conference

http://arxiv.org/abs/1412.6572

126 CHAPTER 4

on Empirical Methods in Natural Language Processing, pages 1858–
1869, Doha, Qatar, 25–29 Oct. 2014. Association for Computational
Linguistics. doi:10.3115/v1/d14-1200.

[16] S. Zheng, Y. Hao, D. Lu, H. Bao, J. Xu, H. Hao, and B. Xu. Joint entity
and relation extraction based on a hybrid neural network. Neurocomput-
ing, 257:59–66, 2017. doi:10.1016/j.neucom.2016.12.075.

[17] Y. Wu, D. Bamman, and S. Russell. Adversarial Training for Re-
lation Extraction. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing, pages 1778–1783,
Copenhagen, Denmark, 2017. Association for Computational Lin-
guistics. Available from: http://aclweb.org/anthology/D17-1187,
doi:10.18653/v1/d17-1187.

[18] M. Yasunaga, J. Kasai, and D. Radev. Robust Multilingual Part-of-Speech
Tagging via Adversarial Training. In Proceedings of the 16th Annual
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, New Or-
leans, USA, 2018. doi:10.18653/v1/n18-1089.

[19] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov. Dropout: A Simple Way to Prevent Neural Networks from Overfit-
ting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[20] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III. Deep Un-
ordered Composition Rivals Syntactic Methods for Text Classification. In
Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 1681–
1691, Beijing, China, July 2015. Association for Computational Lin-
guistics. doi:10.3115/v1/p15-1162.

[21] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. Joint entity recog-
nition and relation extraction as a multi-head selection problem. Expert
Systems with Applications, 114:34–45, 2018. Available from: http:
//www.sciencedirect.com/science/article/pii/S095741741830455X,
doi:10.1016/j.eswa.2018.07.032.

[22] X. Ma and E. Hovy. End-to-end Sequence Labeling via Bi-directional
LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074, Berlin, Germany, 7–12 Aug. 2016.
doi:10.18653/v1/p16-1101.

http://aclweb.org/anthology/D17-1187
http://www.sciencedirect.com/science/article/pii/S095741741830455X
http://www.sciencedirect.com/science/article/pii/S095741741830455X

ADVERSARIAL TRAINING FOR ENTITY AND RELATION EXTRACTION 127

[23] G. Doddington, A. Mitchell, M. Przybocki, L. Ramshaw, S. Strassel,
and R. Weischedel. The Automatic Content Extraction (ACE) Program-
Tasks, Data, and Evaluation. In Proceedings of the Fourth International
Conference on Language Resources and Evaluation, volume 2, page 1,
Lisbon, Portugal, 2004.

[24] D. Roth and W.-t. Yih. A Linear Programming Formulation for Global
Inference in Natural Language Tasks. In HLT-NAACL 2004 Work-
shop: Eighth Conference on Computational Natural Language Learn-
ing (CoNLL-2004), pages 1–8, Boston, USA, 2004. Association for
Computational Linguistics. Available from: http://www.aclweb.
org/anthology/W04-2401.

[25] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. Reconstructing
the house from the ad: Structured prediction on real estate classifieds. In
Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: (Volume 2, Short Papers),
pages 274–279, Valencia, Spain, 3–7 Apr. 2017. doi:10.18653/v1/e17-
2044.

[26] H. Gurulingappa, A. M. Rajput, A. Roberts, J. Fluck, M. Hofmann-
Apitius, and L. Toldo. Development of a benchmark corpus to sup-
port the automatic extraction of drug-related adverse effects from medical
case reports. Journal of Biomedical Informatics, 45(5):885–892, 2012.
doi:10.1016/j.jbi.2012.04.008.

[27] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In
Proceedings of the International Conference on Learning Representa-
tions, San Diego, USA, 2015.

[28] F. Li, Y. Zhang, M. Zhang, and D. Ji. Joint Models for Extracting Adverse
Drug Events from Biomedical Text. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, pages 2838–
2844, New York, USA, 9–15 Jul. 2016. IJCAI/AAAI Press.

http://www.aclweb.org/anthology/W04-2401
http://www.aclweb.org/anthology/W04-2401

5
Sub-event detection from Twitter

streams as a sequence labeling
problem

Previous chapters discussed our newly introduced task of real estate information
extraction: Chapter 2 defined the extraction problem at hand, i.e., recover the tree-
like structured representation of the property tree, and Chapters 3-4B proposed
new neural network methods for the joint task of entity recognition and relation
extraction. In this chapter however, we will focus on a considerably different prob-
lem: we present improved methods for sub-event detection in social media streams.
We frame the task as a sequence labeling problem (which is inherently similar to
the named entity recognition task described in Chapters 2-4B). This way, we are
able to resolve several shortcomings identified in previous works (see Section 5.2).
Specifically, our model is able to (i) take into account the chronological order of
consecutive tweets while (ii) exploiting information from previous tweets for pre-
dicting the presence and the type of a sub-event. Experimental results indicate the
benefit of sequence labeling for sub-event detection in sports Twitter streams in all
of the examined architectures.

? ? ?

G. Bekoulis, J. Deleu, T. Demeester and C. Develder

130 CHAPTER 5

In Proceedings of 2019 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics, 2019.

Abstract This paper introduces improved methods for sub-event detection
in social media streams, by applying neural sequence models not only on
the level of individual posts, but also directly on the stream level. Cur-
rent approaches to identify sub-events within a given event, such as a
goal during a soccer match, essentially do not exploit the sequential na-
ture of social media streams. We address this shortcoming by framing the
sub-event detection problem in social media streams as a sequence label-
ing task and adopt a neural sequence architecture that explicitly accounts
for the chronological order of posts. Specifically, we (i) establish a neural
baseline that outperforms a graph-based state-of-the-art method for binary
sub-event detection (2.7% micro-F1 improvement), as well as (ii) demon-
strate superiority of a recurrent neural network model on the posts se-
quence level for labeled sub-events (2.4% bin-level F1 improvement over
non-sequential models).

5.1 Introduction

Social media allow users to communicate via real-time postings and inter-
actions, with Twitter as a notable example. Twitter user posts, i.e., tweets,
are often related to events. These can be social events (concerts, research
conferences, sports events, etc.), emergency situations (e.g., terrorist at-
tacks) [1], etc. For a single event, multiple tweets are posted, by people
with various personalities and social behavior. Hence, even more so than
(typically more neutral) traditional media, this implies many different per-
spectives, offering an interesting aggregated description.

Given this continuous and large stream of (likely duplicated) informa-
tion in Twitter streams, and their noisy nature, it is challenging to keep
track of the main parts of an event, such as a soccer match. Automating
such extraction of different sub-events within an evolving event is known
as sub-event detection [2]. For tracking each of the sub-events, the timing
aspect is an important concept (i.e., consecutive tweets in time). Thus, a se-
quential model could successfully exploit chronological relations between
the tweets in a Twitter stream as an informative feature for sub-event de-
tection.

Several methods have been proposed for sub-event detection: cluster-
ing methods [3], graph-based approaches [4], topic models [5] and neural
network architectures [6]. None of these studies exploits the chronologi-
cal relation between consecutive tweets. In contrast, our work does take

TWITTER SUB-EVENT DETECTION AS A SEQUENCE LABELING PROBLEM 131

(c) Word Embeddings

b1

b2

b3
t31 : Robben scores !
t32 : Netherlands Scores

t21 : #robben #ned #goalllll
t22 : #NED #goal
t23 : 19' A. Robben

t11 : Australia playing
t12 : Who are you supporting ?

(a) Bins (b) Units

[w11, w12, w13,
w14, w15, w16, w17]

[[t11], [t12]]

or

(e) Chronological LSTM

LSTM

LSTM

LSTM

O

B-goal

I-goal

AVG*
AVG pool
CNN-AVG pool
Tweet/Word attention

…

(d) Representation

AVG*
AVG pool
CNN-AVG pool
Tweet/Word attention

[[t31], [t32]]

[w31, w32, w33,
w34, w35]

or

AVG*…

Figure 5.1: Our sub-event detection model comprises: (a) a bin layer, (b) a unit
layer, (c) a word embeddings layer, (d) a representation layer and (e) a
chronological LSTM layer to model the natural flow of the sub-events
within the event. We represent each bin using either (i) a tweet- or (ii)
a word-level representation. The AVG∗ represents an average pool op-
eration, performed either directly on the embeddings or on the tweet’s
LSTM representation.

into account the chronological order of the Twitter stream and we pre-
dict the presence and the type of a sub-event exploiting information from
previous tweets. Specifically, we (i) propose a new neural baseline model
that outperforms the state-of-the-art performance on the binary classifica-
tion problem of detecting the presence/absence of sub-events in a sports
stream, (ii) establish a new reasonable baseline for also predicting the sub-
-event types, (iii) explicitly take into account chronological information, i.e.,
the relation among consecutive tweets, by framing sub-event detection as
a sequence labeling problem on top of our baseline model, and (iv) per-
form an experimental study, indicating the benefit of sequence labeling for
sub-event detection in sports Twitter streams.

5.2 Related work

Twitter streams have been extensively studied in various contexts, such
as sentiment analysis [7], stock market prediction [8] and traffic detec-
tion [9]. Specifically, for sub-event detection in Twitter, several approaches
have been tried. Unsupervised methods such as clustering aim to group
similar tweets to detect specific sub-events [3, 10] and use simple repre-
sentations such as tf-idf weighting combined with a similarity measure.
Other unsupervised algorithms use topic modeling approaches, based on
assumptions about the tweets’ generation process [5, 11]. Several meth-
ods [2, 12, 13] assume that a sub-event happens when there is a ‘burst’, i.e.,
a sudden increase in the rate of tweets on the considered event, with many
people commenting on it. Recently, neural network methods have used

132 CHAPTER 5

more complicated representations [6, 14]. Also supervised methods have
been applied [15, 16] to the sub-event detection task. These methods usu-
ally exploit graph-based structures or tf-idf weighting schemes. We believe
to be the first to (i) exploit the chronological order of the Twitter stream in
the context of sub-event detection and take into account its sequential na-
ture, and (ii) frame the sub-event detection problem as a sequence labeling
task.

5.3 Model

5.3.1 Task definition

The goal is, given a main event (i.e., soccer match), to identify its core sub-
events (e.g., goals, kick-off, yellow cards) from Twitter streams. Specifi-
cally, we consider a supervised setting, relying on annotated data [16].

5.3.2 Word- vs tweet-level representations

Similar to previous works, we split a data stream into time periods [16]:
we form bins of tweets posted during consecutive time intervals. E.g., for
a soccer game, one-minute intervals (bins) lead to more than 90 bins, de-
pending on the content before and after the game, halftime, stoppage time,
and possibly some pre-game and post-game buffer. Thus, for each bin, we
predict either the presence/absence of a sub-event (Section 5.3.3) or the
most probable sub-event type (Section 5.3.4), depending on the evaluation
scenario.

We consider representing the content of each bin either at (i) word-level
or (ii) tweet-level (see Fig. 5.1). Formally, we assume that we have a set of
n bins b1, ..., bn, where each bin bi consists of mi tweets and ki words (i.e.,
all words of tweets in bin bi). Then, the tweet-level representation of bin bi
is symbolized as ti1, ..., timi , where timi is the mth

i tweet of bin bi. In the
word-level representation, we chronologically concatenate the words from
the tweets in the bin: wi1, .., wiki

, where wiki
is the kth

i word of bin bi.

5.3.3 Binary classification baseline

To compare with previous work [16], we establish a simple baseline for
binary classification: presence/absence of a sub-event. For this case, we
use as input the word-level representation of each bin. To do so, we use
word embeddings (randomly initialized) with average (AVG) pooling [17]
in combination with a multilayer perceptron (MLP) for binary classifica-
tion, i.e., presence/absence of a sub-event. Note that we experimented

TWITTER SUB-EVENT DETECTION AS A SEQUENCE LABELING PROBLEM 133

with pre-trained embeddings as well as max-pooling, but those early ex-
periments led to performance decrease compared to the presented baseline
model. We found that training based on average bin representations works
substantially better than with max-pooling, and we hypothesize that this
is related to the noisy nature of the Twitter stream.

5.3.4 Sequence labeling approach

Building on the baseline above, we establish a new architecture that is able
to capture the sub-event types as well as their duration. We phrase sub-
event detection in Twitter streams as a sequence labeling problem. This
means we assume that the label of a bin is not independent of neighboring
bin labels, given the chronological order of bins of the Twitter stream, as
opposed to independent prediction for each bin in the binary classification
baseline above. For instance, when a goal is predicted as a label for bin bi,
then it is probable that the label of the next bin bi+1 will also be goal. Al-
though a sub-event may occur instantly, an identified sub-event in a Twit-
ter stream can span consecutive bins, i.e., minutes: users may continue
tweeting on a particular sub-event for relatively long time intervals. For
this reason, we apply the well-known BIO tagging scheme [18] for the sub-
event detection problem. For example, the beginning of a goal sub-event
is defined as B-goal, while I-goal (inside) is assigned to every consecutive
bin within the same sub-event, and the O tag (outside) to every bin that is
not part of any sub-event. To propagate chronological information among
bins, we adopt an LSTM on the sequence of bins as illustrated in Fig. 5.1,
layer (e). Note that this tagging approach assumes that sub-events do not
overlap in time, i.e., only at most one is ongoing in the Twitter stream at
any point in time.

5.4 Experimental setup

We evaluated our system1 on the dataset from [16], with tweets on 20
soccer matches from the 2010 and 2014 FIFA World Cups, totalling over
2M pre-processed tweets filtered from 6.1M collected ones, comprising 185
events. The dataset includes a set of sub-events, such as goal, kick-off, half-
time, etc. To compare our binary classification baseline system to previous
methods (Table 5.1), we use the same train/test splits as [16], where 3
matches are used for training and 17 matches as test set. In this setting,
we predict only the presence/absence of a sub-event. Similar to previ-
ous work, we count a sub-event as correct if at least one of its compris-

1https://github.com/bekou/subevent_sequence_labeling

https://github.com/bekou/subevent_sequence_labeling

134 CHAPTER 5

ing bins has been classified as a sub-event. For the experimental study
of our proposed sequence labeling approach for sub-event detection, where
sub-event types are predicted, we have randomly split the test set into
test (10 matches) and development (7 matches) sets. We use the devel-
opment set to optimize the F1 score for tuning of the model parameters,
i.e., the word/tweet embedding representation size, LSTM hidden state
size, dropout probability. We adopt 2 evaluation strategies. The first one,
referred to as relaxed evaluation, is commonly used in entity classification
tasks [19–21] and similar to the binary classification baseline system evalu-
ation: score a multi-bin sub-event as correct if at least one of its comprising
bin types (e.g., goal) is correct, assuming that the boundaries are given. The
second evaluation strategy, bin-level, is stricter: we count each bin individ-
ually, and check whether its sub-event type has been predicted correctly,
similar to the token-based evaluation followed in [22].

5.5 Results

5.5.1 Baseline results

Table 5.1 shows the experimental results of our baseline model. The Burst
baseline system is based on the tweeting rate in a specific time window
(i.e., bin) and if a threshold is exceed, the system identifies that a sub-event
has occurred. We report evaluation scores as presented in [16]. The second
approach is the graph-based method of [16]. We observe that our base-
line system (Section 5.3.3) has a 1.2% improvement in terms of macro-F1
and 2.7% improvement in terms of micro-F1, compared to the graph-based
model from [16], mainly due to increased precision, and despite the recall
loss.

Table 5.1: Comparing our neural network binary classification baseline model to
state-of-the-art (P = precision, R = recall).

Macro Micro
Settings P R F1 P R F1

Burst 78.0 54.0 64.0 72.0 54.0 62.0
Meladianos et al. (2018) [16] 76.0 75.0 75.0 73.0 74.0 73.0
Our binary classif. baseline 89.7 69.9 76.1 83.6 69.0 75.6

TWITTER SUB-EVENT DETECTION AS A SEQUENCE LABELING PROBLEM 135

Table 5.2: Comparison of our baseline methods in terms of micro bin-level and re-
laxed F1 score with and without chronological LSTM (see Fig. 5.1). The
3and 7 indicate whether the model uses a tweet-level LSTM (TL).

Bin-level Relaxed
Model TL P R F1 TL P R F1

w
it

ho
ut

ch
ro

no
l.

LS
TM

Word-tf-idf - 49.4 52.0 50.6 - 56.1 56.1 56.1
Word-AVG - 51.4 45.9 48.5 - 56.1 56.1 56.1

Word-CNN-AVG - 56.9 56.0 56.4 - 75.6 75.6 75.6
Word-attention - 52.9 58.7 55.6 - 86.5 86.5 86.5

Tweet-AVG 3 49.0 45.9 47.4 3 62.1 62.1 62.1
Tweet-attention 3 51.9 42.3 46.6 7 80.4 80.4 80.4

Tweet-CNN 7 58.8 51.1 54.7 7 70.7 70.7 70.7

w
it

h
ch

ro
no

l.
LS

TM

Word-AVG - 58.1 58.3 58.2 - 71.9 71.9 71.9
Word-CNN-AVG - 60.8 56.1 58.4 - 60.9 60.9 60.9
Word-attention - 52.9 42.9 47.4 - 60.9 60.9 60.9

Tweet-AVG 7 57.4 60.3 58.8 7 64.6 64.6 64.6
Tweet-attention 3 48.2 52.2 50.1 7 67.0 67.0 67.0

Tweet-CNN 7 65.3 49.7 56.4 7 60.9 60.9 60.9

5.5.2 Sequence labeling results

Table 5.2 illustrates the predictive performance of our proposed model (i.e.,
using the chronological LSTM) compared to models making independent
predictions per bin. The upper part of Table 5.2 contains models without
the chronological LSTM. Our experiments study both word-level and tweet-
level bin representations (see Fig. 5.1), as reflected in the ‘Word’ vs. ‘Tweet’
prefix, respectively, in the Model column of Table 5.2.

The simplest word-level representation uses the tf-idf weighting scheme
(as in [3]) followed by an MLP classifier. For the other word-level models,
we exploit several architectures: AVG pooling [17], a CNN followed by
AVG pooling [23] and hierarchical word-level attention [24].

For tweet-level representations, we adopt similar architectures, where
the AVG, CNNs and attention are performed on sentence level rather than
on the word-level representation of the bin. In this scenario, we have also
exploited the usage of sequential LSTMs to represent the tweets. When
comparing models with and without tweet-level LSTMs, we report the
strategy that yields the best results, indicated by 3 and 7 in the tweet-level
LSTM (TL) columns of Table 5.2. We do not present results for applying
sequential LSTMs on the word-level bin representation, because of slow
training on the long word sequences.
Benefit of chronological LSTM: The bottom part of Table 5.2 presents the
results of the same models followed by a chronological LSTM to capture

136 CHAPTER 5

0

20

40

60

0 20 40 60

Number of epochs

F
1

P
er

fo
rm

an
ce

Tweet−AVG
Word−AVG
Word−CNN−AVG

Figure 5.2: Bin-level F1 performance of the three best performing models on the val-
idation set with respect to the number of epochs. The smoothed lines
(obtained by LOWESS smoothing) model the trends and the 95% confi-
dence intervals.

the natural flow of the stream as illustrated in Fig. 5.1. We report results as
described in Section 5.4, using the micro F1 score with the two evaluation
strategies (bin-level and relaxed). We observe that when using the chrono-
logical LSTM, the performance in terms of bin-level F1 score is substan-
tially improved for almost every model. Note that the best model using
the chronological LSTM (Tweet-AVG) achieves 2.4% better F1 than the best
performing model without the use of chronological LSTM (Word-CNN-
AVG). In most cases there is also a consistent improvement for both the
precision and the recall metrics, which is thanks to the sequential nature of
the upper level LSTM capturing the flow of the text.
Limitations of relaxed evaluation: On the other hand, using the relaxed
evaluation strategy, we observe that the best models are those without the
chronological LSTM layer. Yet, we consider the relaxed evaluation strategy
flawed for our scenario, despite the fact that it has been used for entity
classification tasks [19, 20]. Indeed, it is not able to properly capture sub-
events which are characterized by duration: e.g., if a model assigns a dif-
ferent label to each of the bins that together constitute a single sub-event,
then this sub-event counts as a true positive based on the relaxed evalu-
ation strategy (similar to the evaluation proposed by [16] and followed
in Table 5.1). Thus, in this work, we propose to use the bin-level evaluation,
since it is a more natural way to measure the duration of a sub-event in a
supervised sequence labeling setting. Note that due to the noisy nature of
Twitter streams, a tweet sequence spanning a particular sub-event is likely
to contain also tweets that are not related to the given sub-event: a given
bin inside the event may contain only a minority of tweets discussing the
event. Therefore, we consider the standard sequence labeling evaluation

TWITTER SUB-EVENT DETECTION AS A SEQUENCE LABELING PROBLEM 137

(requiring to have types as well as boundaries correct) to be not applicable
in sub-event detection.
Performance comparison of the top-3 models: Figure 5.2 shows the per-
formance of our three best performing models in terms of bin-level F1 score
on the validation set. The best performing model is the Tweet-AVG model
since it attains its maximum performance even from the first training epochs.
The Word-AVG model performs well from the first epochs, showing simi-
lar behavior to the Tweet-AVG model. This can be explained by the similar
nature of the two models. The word-level CNN model attains maximum
performance compared to the other two models in later epochs. Overall,
we propose the use of the chronological LSTM with the Tweet-AVG model
since this model does not rely on complex architectures and it gives con-
sistent results.

5.6 Conclusion

In this work, we frame the problem of sub-event detection in Twitter streams
as a sequence labeling task. Specifically, we (i) propose a binary classifica-
tion baseline model that outperforms state-of-the-art approaches for sub-
-event detection (presence/absence), (ii) establish a strong baseline that ad-
ditionally predicts sub-event types, and then (iii) extend this baseline model
with the idea of exchanging chronological information between sequential
posts, and (iv) prove it to be beneficial in almost all examined architectures.

Acknowledgements

We would like to thank the anonymous reviewers for their constructive
feedback. Moreover, we would like to thank Christos Xypolopoulos and
Giannis Nikolentzos for providing (i) the Twitter dataset (tweet ids) and
(ii) instructions to reproduce the results of their graph-based approach.

References

[1] C. Castillo. Big Crisis Data: Social Media in Disasters and
Time-Critical Situations. Cambridge University Press, 2016.
doi:10.1017/CBO9781316476840.

[2] J. Nichols, J. Mahmud, and C. Drews. Summarizing Sporting Events Us-
ing Twitter. In Proceedings of the 2012 ACM International Conference
on Intelligent User Interfaces, pages 189–198, New York, NY, USA,

138 CHAPTER 5

2012. ACM. Available from: http://doi.acm.org/10.1145/2166966.
2166999, doi:10.1145/2166966.2166999.

[3] D. Pohl, A. Bouchachia, and H. Hellwagner. Automatic Sub-event De-
tection in Emergency Management Using Social Media. In Proceedings
of the 21st International Conference on World Wide Web, pages 683–
686, New York, NY, USA, 2012. ACM. Available from: http://doi.acm.
org/10.1145/2187980.2188180, doi:10.1145/2187980.2188180.

[4] P. Meladianos, G. Nikolentzos, F. Rousseau, Y. Stavrakas, and
M. Vazirgiannis. Degeneracy-Based Real-Time Sub-Event Detection in
Twitter Stream. In Proceedings of the 9th International AAAI Con-
ference on Web and Social Media, pages 248–257. AAAI Press, 2015.

[5] C. Xing, Y. Wang, J. Liu, Y. Huang, and W.-Y. Ma. Hashtag-based
Sub-event Discovery Using Mutually Generative LDA in Twitter. In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
pages 2666–2672. AAAI Press, 2016. Available from: http://dl.acm.
org/citation.cfm?id=3016100.3016274.

[6] Z. Wang and Y. Zhang. A Neural Model for Joint Event Detection and
Summarization. In Proceedings of the 26th International Joint Con-
ference on Artificial Intelligence, pages 4158–4164. AAAI Press, 2017.
Available from: http://dl.acm.org/citation.cfm?id=3171837.3171867.

[7] E. Kouloumpis, T. Wilson, and J. Moore. Twitter sentiment analysis: The
good the bad and the omg! In Proceedings of the Fifth International
AAAI conference on weblogs and social media, pages 538–541, 2011.

[8] T. H. Nguyen and K. Shirai. Topic Modeling based Sentiment Analy-
sis on Social Media for Stock Market Prediction. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1354–1364. Association
for Computational Linguistics, 2015. Available from: http://aclweb.
org/anthology/P15-1131, doi:10.3115/v1/P15-1131.

[9] E. D’Andrea, P. Ducange, B. Lazzerini, and F. Marcelloni. Real-Time
Detection of Traffic From Twitter Stream Analysis. IEEE Transactions
on Intelligent Transportation Systems, 16(4):2269–2283, Aug 2015.
doi:10.1109/TITS.2015.2404431.

[10] D. Abhik and D. Toshniwal. Sub-event Detection During Natural Haz-
ards Using Features of Social Media Data. In Proceedings of the 22nd
International Conference on World Wide Web, pages 783–788, New

http://doi.acm.org/10.1145/2166966.2166999
http://doi.acm.org/10.1145/2166966.2166999
http://doi.acm.org/10.1145/2187980.2188180
http://doi.acm.org/10.1145/2187980.2188180
http://dl.acm.org/citation.cfm?id=3016100.3016274
http://dl.acm.org/citation.cfm?id=3016100.3016274
http://dl.acm.org/citation.cfm?id=3171837.3171867
http://aclweb.org/anthology/P15-1131
http://aclweb.org/anthology/P15-1131

TWITTER SUB-EVENT DETECTION AS A SEQUENCE LABELING PROBLEM 139

York, NY, USA, 2013. ACM. Available from: http://doi.acm.org/10.
1145/2487788.2488046, doi:10.1145/2487788.2488046.

[11] P. Srijith, M. Hepple, K. Bontcheva, and D. Preotiuc-Pietro. Sub-story
detection in Twitter with hierarchical Dirichlet processes. Information Pro-
cessing & Management, 53(4):989 – 1003, 2017. Available from: http:
//www.sciencedirect.com/science/article/pii/S0306457316300668,
doi:https://doi.org/10.1016/j.ipm.2016.10.004.

[12] S. Zhao, L. Zhong, J. Wickramasuriya, and V. Vasudevan. Human as
real-time sensors of social and physical events: A case study of Twitter and
sports games. arXiv preprint arXiv:1106.4300, 2011.

[13] A. Zubiaga, D. Spina, E. Amigó, and J. Gonzalo. Towards Real-time
Summarization of Scheduled Events from Twitter Streams. In Proceedings
of the 23rd ACM Conference on Hypertext and Social Media, pages
319–320, New York, NY, USA, 2012. ACM. Available from: http://doi.
acm.org/10.1145/2309996.2310053, doi:10.1145/2309996.2310053.

[14] G. Chen, N. Xu, and W. Mao. An Encoder-Memory-Decoder Frame-
work for Sub-Event Detection in Social Media. In Proceedings of the
27th ACM International Conference on Information and Knowl-
edge Management, pages 1575–1578, New York, NY, USA, 2018.
ACM. Available from: http://doi.acm.org/10.1145/3269206.3269256,
doi:10.1145/3269206.3269256.

[15] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes Twitter users:
real-time event detection by social sensors. In Proceedings of the 19th
international conference on World wide web, pages 851–860. ACM,
2010.

[16] P. Meladianos, C. Xypolopoulos, G. Nikolentzos, and M. Vazirgiannis.
An Optimization Approach for Sub-event Detection and Summarization in
Twitter. In Proceedings of the 40th European Conference in Informa-
tion Retrieval, pages 481–493. Springer International Publishing, 2018.

[17] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III. Deep Un-
ordered Composition Rivals Syntactic Methods for Text Classification. In
Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 1681–
1691. Association for Computational Linguistics, 2015. Available
from: http://aclweb.org/anthology/P15-1162, doi:10.3115/v1/P15-
1162.

http://doi.acm.org/10.1145/2487788.2488046
http://doi.acm.org/10.1145/2487788.2488046
http://www.sciencedirect.com/science/article/pii/S0306457316300668
http://www.sciencedirect.com/science/article/pii/S0306457316300668
http://doi.acm.org/10.1145/2309996.2310053
http://doi.acm.org/10.1145/2309996.2310053
http://doi.acm.org/10.1145/3269206.3269256
http://aclweb.org/anthology/P15-1162

140 CHAPTER 5

[18] L. Ramshaw and M. Marcus. Text Chunking using Transformation-Based
Learning. In Third Workshop on Very Large Corpora, 1995. Available
from: http://aclweb.org/anthology/W95-0107.

[19] H. Adel and H. Schütze. Global Normalization of Convolutional Neural
Networks for Joint Entity and Relation Classification. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language
Processing, pages 1723–1729. Association for Computational Linguis-
tics, 2017. Available from: http://aclweb.org/anthology/D17-1181,
doi:10.18653/v1/D17-1181.

[20] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. Adversarial train-
ing for multi-context joint entity and relation extraction. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 2830–2836. Association for Computational Linguistics,
2018. Available from: http://aclweb.org/anthology/D18-1307.

[21] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. Joint entity
recognition and relation extraction as a multi-head selection problem. Ex-
pert Systems with Applications, 114:34 – 45, 2018. Available from:
https://arxiv.org/abs/1804.07847.

[22] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. An attentive
neural architecture for joint segmentation and parsing and its application to
real estate ads. Expert Systems with Applications, 102:100 – 112, 2018.
Available from: https://arxiv.org/abs/1709.09590.

[23] Y. Kim. Convolutional Neural Networks for Sentence Classification. In
Proceedings of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1746–1751. Association
for Computational Linguistics, 2014. Available from: http://aclweb.
org/anthology/D14-1181, doi:10.3115/v1/D14-1181.

[24] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy. Hier-
archical Attention Networks for Document Classification. In Proceed-
ings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies, pages 1480–1489. Association for Computational Linguis-
tics, 2016. Available from: http://aclweb.org/anthology/N16-1174,
doi:10.18653/v1/N16-1174.

http://aclweb.org/anthology/W95-0107
http://aclweb.org/anthology/D17-1181
http://aclweb.org/anthology/D18-1307
https://arxiv.org/abs/1804.07847
https://arxiv.org/abs/1709.09590
http://aclweb.org/anthology/D14-1181
http://aclweb.org/anthology/D14-1181
http://aclweb.org/anthology/N16-1174

6
Conclusions and Future Research

This chapter outlines the main conclusions for each of the chapters described in this
thesis. Specifically, we describe the main contributions for every presented model
and we conclude by presenting future research directions that alleviate some of the
limitations of the proposed models.

? ? ?

6.1 Conclusions

6.1.1 Baseline methods for the real estate structured predic-
tion problem

In Chapter 2 of this thesis, we defined the new real estate relation extraction
problem [1] where the goal is to recover the tree structured representation
of the property. Specifically, a comparative study has been conducted on
the newly defined real estate relation extraction problem where we divided
the problem into the sub-problems of sequence labeling and dependency
parsing. We used (1) Conditional Random Fields (CRFs) for the real estate
entity recognition subtask, (2) local and global graph-based, and transi-
tion-based algorithms for dependency parsing to predict the part-of rela-

142 CHAPTER 6

tions between the identified entities, and (3) a maximum spanning tree al-
gorithm for recovering the property tree. Experimental results illustrate that
(i) the global graph-based approach outperforms other alternative meth-
ods when the gold entities are given while (ii) the locally based method
combined with a maximum spanning tree algorithm performs better (i.e.,
improvement of 1% F1 points) in our pipeline setting.

6.1.2 Neural joint model for the real estate structured pre-
diction problem

In Chapter 3, we proposed a new joint model for the real estate structured
prediction problem that unlike the pipeline models presented in Chapter 2
solves the subtasks of NER and dependency parsing simultaneously [2].
This way, we resolved the limitations of tackling the two tasks in a pipeline
fashion: we (i) avoid the error propagation that would arise from the exe-
cution of consecutive subtasks, and (ii) exploit the interactions between the
subtasks. We experimentally evaluated the performance of the proposed
model over several pipeline methods that have been developed for this
task (presented in Chapter 2) and we reported an improvement of over
three percentage points in the overall edge F1 score of the property tree.
Moreover, we experimented with different attentive architectures over our
basic joint model. The results indicate that exploiting attention mecha-
nisms that encourage our model to focus on informative tokens, improves
the model performance (increase of overall edge F1 score with ∼2.1%) and
increases the ability to form valid trees in the prediction phase (4% to 10%
more valid trees for the two best scoring attention mechanisms) before ap-
plying the maximum spanning tree algorithm (see step (3) in Section 6.1.1).

6.1.3 General purpose neural joint model for NER and re-
lation extraction

In Chapter 4A, we presented a joint neural model that reduces the qua-
dratic complexity of the NER module introduced in Chapter 3. The model
presented in Chapter 4A aims at simultaneously extracting entities and
relations from textual data and comprises a CRF layer for the entity recog-
nition task and a sigmoid layer for the relation extraction task [3]. The sig-
moid layer facilitates the extraction of multiple relations per entity model-
ing the problem as multi-label head selection task. Unlike previous models
on this joint task that rely on external NLP tools (i.e., POS taggers, depen-
dency parsers), the proposed methodology produces automatically gener-
ated features and can be adapted into any language and context. Thus,
the performance of our model is not affected by the accuracy of external or

CONCLUSIONS AND FUTURE RESEARCH 143

hand-crafted features. Experimental results illustrate the effectiveness of
our approach by conducting a large scale experimental study.

In Chapter 4B, we proposed to use adversarial training (AT) as a regu-
larization method over the joint model for entity recognition and relation
extraction [4] proposed in Chapter 4A. We showed how to apply adversar-
ial perturbations to improve the robustness of our model. Results indicate
that AT improves the results for each task separately and the overall per-
formance of the joint model while it reaches high performance even for the
first iterations of the training procedure.

6.1.4 Sub-event detection from Twitter streams as a sequence
labeling problem

Unlike previous Chapters 2-4B, where we examined the tasks of NER and
relation extraction, Chapter 5 focused on the sub-event detection task from
Twitter streams [5]. Specifically, we framed the problem of sub-event de-
tection in Twitter streams as a sequence labeling task (this is similar to the
NER task examined in previous Chapters 2-4B). In particular, we (i) pro-
posed a baseline model that outperforms state-of-the-art approaches for
sub-event detection (presence/absence of a sub-event), (ii) established a
strong baseline for predicting sub-event types, (iii) built upon this baseline
model and introduce the idea of exchanging chronological information be-
tween sequential posts which (iv) is proven beneficial in almost any of the
examined architectures.

6.2 Future Directions

In this thesis, we (i) defined the new real estate structure prediction prob-
lem, which we formulated as a pipeline of two subtasks (see Chapter 2),
(ii) proposed a neural joint model that simultaneously extracts the entities
and the relations for this application scenario (see Chapter 3), (iii) devel-
oped a general purpose joint model that can achieve state-of-the-art re-
sults in various settings and languages (see Chapter 4A) combined with
adversarial perturbations as a regularization method (see Chapter 4B), and
(iv) formulated the sub-event detection problem from Twitter streams as a
sequence labeling problem to capture the chronological order of the tweets.
Even though the proposed methodologies have achieved state-of-the-art
performance in the respectively examined tasks, there are several promis-
ing research directions. In the next paragraphs, we describe future research
directions for improving the models discussed in Chapters 3-5.

144 CHAPTER 6

Auxiliary tasks: The proposed joint model (Chapters 3-4B) is currently
trained on two specific tasks (i.e., NER and relation extraction). However,
as mentioned in [6–8], studying tasks together with other auxiliary tasks in
a multitask learning setting can lead to performance improvements. This
idea has not been exploited yet in the current architecture. Thus, we pro-
pose to enhance our training scheme for the joint setting of entity and rela-
tion extraction with other auxiliary tasks. That way our model (i.e., the one
for joint entity and relation extraction) will benefit from different tasks by
using different representations of the data learned by these other auxiliary
tasks without the need of additional training data. The information shar-
ing is usually implemented by sharing layers in the neural architecture. To
select appropriate auxiliary tasks to jointly consider, existing works have
investigated [7, 8] the benefit of sharing information between particular
tasks. For instance, we can (i) exploit the relatedness between sequence
labeling tasks such as POS tagging, keyword detection, etc. as described
in [7], and (ii) study additional tasks in an increasingly complex fashion as
explained in [8].

Transfer learning: Another idea for improving the current joint model is
to exploit the use of transfer learning methods. Transfer learning leads to
high performance improvements in several NLP problems. Specifically, re-
cent works such as ELMo [9], BERT [10] and ULMFiT [11] demonstrated
significant performance gains on problems ranging from text classification
to question answering. Thus, we can exploit the use of pre-trained lan-
guage models for our joint architecture. This way the joint models (pre-
sented in Chapters 3-4B) will be trained on better representations of words.
These representations using language modeling architectures can capture
the meaning of the entire context of the word instead of just focusing on
the meaning of the word based only on adjacent terms. This is extremely
useful in cases where we have polysemous terms. For instance, in the biol-
ogy domain where some genes and diseases share the same nomenclature
as reported in [12], we can use such contextual word representations to
obtain substantial improvements.

Few-shot learning: Finally, we can study the problem of entity and rela-
tion extraction in a few-shot learning setting. In this setting, we are inter-
ested in making predictions in cases where we have seen few training in-
stances. The current neural network architecture for the joint model needs
a large amount of training examples. This is a common characteristic of all
the neural network architectures (i.e., they need a lot of data to generalize
well). Although the idea of few-shot learning for relation extraction has
been investigated in the work of [13] (where the relation extraction task

CONCLUSIONS AND FUTURE RESEARCH 145

has been formulated as a question answering problem), the solution they
propose introduces an additional annotation load and uses complex ques-
tion answering systems to solve the task at hand (i.e., relation extraction).
Thus, to address scenarios where there is a limited amount of training data
in the task of entity and relation extraction, we propose to use alternative
methods (similar to the work of [14]) which can be applied on top of the
existing state-of-the-art joint models presented in Chapters 4A-4B.

Future research steps: Natural language understanding is a hard problem
to solve even when we consider only the English language. However, the
problem can be even more complicated when we consider that there are
more than 7000 languages throughout the world and more than 90 lan-
guages with more than 10 million native speakers [15]. Although there is
an increasing need for solving NLP tasks (e.g., text classification) in mul-
tiple languages, collecting a large amount of annotated data for each lan-
guage is not realistic due to the increased annotation load. Nevertheless
it is not straightforward to train a model for a specific task (e.g., text clas-
sification) in a particular language (e.g., English) and apply it directly on
(another) language with limited training data (i.e., low-resource scenarios).
Several methods have been proposed to tackle this type of cross-lingual
problems (see [16, 17]). The best performing systems in these works rely
on machine translation methods. Machine translation for solving cross-
lingual tasks can be used by translating (i) the source to the target language
and then training a model (e.g., classifier) for each target language, and
(ii) each target language to the source language and use the model (e.g.,
classifier) of the source language. These methods have several shortcom-
ings. For instance, using method (i) leads to maintaining one model for
each target task while method (ii) leads to translating to the source lan-
guage at inference time. An alternative solution is to use cross-lingual
word embeddings [18] but this leads to performance decrease compared
to standard monolingual word embeddings. Transfer learning and meta-
learning methods are promising future directions that can further increase
the performance of multi-lingual systems on difficult NLP tasks especially
in low-resource scenarios (i.e., languages with limited training data). This
is because transfer learning and meta-learning methods have been also
proposed for few-shot learning settings. These approaches can be applied
in the way that we described to the previous paragraphs of this section.

146 CHAPTER 6

References

[1] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. Reconstructing
the house from the ad: Structured prediction on real estate classifieds. In
Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: (Volume 2, Short Papers),
pages 274–279, Valencia, Spain, 3–7 Apr. 2017.

[2] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. An attentive
neural architecture for joint segmentation and parsing and its application
to real estate ads. Expert Systems with Applications, 102:100–112, 2018.
doi:10.1016/j.eswa.2018.02.031.

[3] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. Joint entity recog-
nition and relation extraction as a multi-head selection problem. Expert
Systems with Applications, 114:34–45, 2018.

[4] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. Adversarial train-
ing for multi-context joint entity and relation extraction. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 2830–2836, 2018.

[5] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder. Sub-event detec-
tion from twitter streams as a sequence labeling problem. In Proceedings
of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 745–750, Minneapolis, Min-
nesota, June 2019. doi:10.18653/v1/N19-1081.

[6] A. Søgaard and Y. Goldberg. Deep multi-task learning with low level tasks
supervised at lower layers. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics, page 231, 2016.

[7] J. Bingel and A. Søgaard. Identifying beneficial task relations for multi-
task learning in deep neural networks. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 164–169, 2017.

[8] K. Hashimoto, Y. Tsuruoka, R. Socher, et al. A Joint Many-Task Model:
Growing a Neural Network for Multiple NLP Tasks. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Process-
ing, pages 1923–1933, 2017.

CONCLUSIONS AND FUTURE RESEARCH 147

[9] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer. Deep Contextualized Word Representations. In Proceed-
ings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237, 2018.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. In Proceed-
ings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), 2019.

[11] J. Howard and S. Ruder. Universal Language Model Fine-tuning for Text
Classification. In Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers), pages
328–339, 2018.

[12] W. Yoon, C. H. So, J. Lee, and J. Kang. CollaboNet: collaboration of deep
neural networks for biomedical named entity recognition. In Proceedings
of the ACM 12th International Workshop on Data and Text Mining in
Biomedical Informatics, 2018.

[13] O. Levy, M. Seo, E. Choi, and L. Zettlemoyer. Zero-Shot Relation Extrac-
tion via Reading Comprehension. In Proceedings of the 21st Conference
on Computational Natural Language Learning (CoNLL 2017), pages
333–342, 2017.

[14] C. Finn, P. Abbeel, and S. Levine. Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks. In Proceedings of the International Con-
ference on Machine Learning (ICML 2017), pages 1126–1135, 2017.

[15] Summary by language size. https://www.ethnologue.
com/statistics/size. Accessed: 2019-05-25.

[16] A. Conneau, R. Rinott, G. Lample, A. Williams, S. Bowman,
H. Schwenk, and V. Stoyanov. XNLI: Evaluating Cross-lingual Sentence
Representations. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 2475–2485, 2018.

[17] A. Eriguchi, M. Johnson, O. Firat, H. Kazawa, and W. Macherey.
Zero-Shot Cross-lingual Classification Using Multilingual Neural Machine
Translation. arXiv preprint arXiv:1809.04686, 2018.

[18] S. Ruder, I. Vulic, and A. Søgaard. A Survey of Cross-Lingual Word
Embedding Models. 2018.

https://www.ethnologue.com/statistics/size
https://www.ethnologue.com/statistics/size

	Title page
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Samenvatting
	Summary
	Introduction
	Traditional approaches in NLP
	Neural network approaches in NLP
	Embedding layer
	Word embeddings
	Deep contextualized word representations
	Character embeddings

	RNN
	CNN

	Learning in NLP Tasks
	Single task learning
	Multi-task learning

	NLP tasks
	Sequence labeling
	Dependency parsing
	Relation extraction

	Research contributions
	Publications
	Publications in international journals(listed in the Science Citation Index)
	Publications in international conferences
	Publications in international conferences (not included in this thesis)

	References

	Reconstructing the house from the ad: Structured prediction on real estate classifieds
	Introduction
	Related work
	Structured prediction of real estate properties
	Problem formulation
	Structured prediction model
	Sequence labeling
	Part-of tree construction

	Experimental results
	Experimental setup
	Entity extraction
	Dependency parsing
	Pipeline approach

	Conclusion
	References

	An attentive neural architecture for joint segmentation and parsing and its application to real estate ads
	Introduction
	Related work
	Sequence labeling
	Dependency parsing
	Joint learning

	Problem definition
	Methodology
	Two-step pipeline
	Sequence labeling
	Part-of tree construction

	Joint model
	Embedding Layer
	Bidirectional LSTM encoding layer
	Joint learning as head selection
	Attention Layer
	Tree construction step: Edmonds' algorithm

	Results and discussion
	Experimental setup
	Comparison of the pipeline and the joint model
	Comparison of the joint and the attention model
	Discussion

	Conclusions
	References

	Joint entity recognition and relation extraction as a multi-head selection problem
	Introduction
	Related work
	Named entity recognition
	Relation extraction
	Joint entity and relation extraction

	Joint model
	Embedding layer
	Bidirectional LSTM encoding layer
	Named entity recognition
	Relation extraction as multi-head selection
	Edmonds' algorithm

	Experimental setup
	Datasets and evaluation metrics
	Word embeddings
	Hyperparameters and implementation details

	Results and discussion
	Results
	Analysis of feature contribution

	Conclusion
	References
	Adversarial training for multi-context joint entity and relation extraction
	Introduction
	Related work
	Model
	Joint learning as head selection
	Adversarial training (AT)

	Experimental setup
	Results
	Conclusion
	References
	Sub-event detection from Twitter streams as a sequence labeling problem
	Introduction
	Related work
	Model
	Task definition
	Word- vs tweet-level representations
	Binary classification baseline
	Sequence labeling approach

	Experimental setup
	Results
	Baseline results
	Sequence labeling results

	Conclusion
	References

	Conclusions and Future Research Directions
	Conclusions
	Baseline methods for the real estate structured prediction problem
	Neural joint model for the real estate structured prediction problem
	General purpose neural joint model for NER and relation extraction
	Sub-event detection from Twitter streams as a sequence labeling problem

	Future Directions
	References

