

https://ugentt2k.github.io

Sub-Event Detection from Twitter Streams

as a Sequence Labeling Problem

G. Bekoulis, J. Deleu, T. Demeester, C. Develder giannis.bekoulis@UGent.be

D DATA LAB INTERNET &

Introduction

Goal: Detect sub-events in social media streams (i.e., Twitter)

Motivation:

Difficult to track sub-events in Twitter streams (i) Different perspectives of the same event (e.g., emergency (ii) situations) compared to traditional media

Challenges:

Noisy nature of Twitter streams (e.g., event tweets (i) interspersed with others, non-event related info interjected) People reporting the same thing (ii) **Contribution:**

Idea

Frame the problem as a sequence labeling task (i) (ii) Exploit the use of a chronological LSTM

Task: Sub-event detection in sport Twitter stream

Chronological LSTM is able to capture the natural flow of the text

Results										
		Bin-level			Relaxed					
	Model	TL	Р	R	F ₁	TL	Р	R	F ₁	
	Word-tf-idf	-	49.40	52.06	50.69	-	56.10	56.10	56.10	
	Word-AVG	-	51.40	45.96	48.53	-	56.10	56.10	56.10	
M	Word-CNN-AVG	-	56.93	56.01	56.47	-	75.60	75.60	75.60	
ST	Word-attention	-	52.92	58.71	55.66	-	86.59	86.59	86.59	
TSTM THE	Tweet-AVG	1	49.04	45.96	47.45	1	62.19	62.19	62.19	
	Tweet-attention	1	51.99	42.37	46.68	X	80.48	80.48	80.48	
	Tweet-CNN	×	58.88	51.17	54.75	×	70.73	70.73	70.73	
	Word-AVG		58.14	58.35	58.24	4	71.95	71.95	71.95	
	Word-CNN-AVG	-	60.89	56.19	58.45	-	60.97	60.97	60.97	
TSTIM	Word-attention		52.99	42.90	47.42	-	60.97	60.97	60.97	
L.S.	Tweet-AVG	X	57.43	60.32	58.84	X	64.63	64.63	64.63	
	Tweet-attention	1	48.26	52.24	50.17	X	67.07	67.07	67.07	
	Tweet-CNN	X	65.33	49.73	56.47	X	60.97	60.97	60.97	

Why is **Relaxed** evaluation flawed?

Gold Label	Predictions				
B-GOAL	B-RED CARD				
I-GOAL	I-GOAL				
I-GOAL	I-PENALTY				
I-GOAL	I-YELLOW CARD				

Rationale: If a model assigns a different label to each of the bins of a sub-event, then this sub-event counts as a true positive

Chronological LSTM improves the *bin-level* F1 score

Conclusions

(i) New neural model for binary sub-event detection (ii) Propose a strong model to predict sub-event types (iii) Extend the model with the idea of exchanging chronological information between sequential posts, and (iv) Using a chronological LSTM is beneficial in almost all examined architectures.

References

Sub-event detection from twitter streams as a sequence labeling (i) problem. G. Bekoulis, J. Deleu, T. Demeester, C. Develder. 2019, **NAACL** '19.

Joint entity recognition and relation extraction as a multi-head (ii) selection problem. G. Bekoulis, J. Deleu, T. Demeester, C. Develder. 2019. Expert Systems with Applications, Volume 114, 2018.