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ABSTRACT Fake news is a serious problem, which has received considerable attention from both
industry and academic communities. Over the past years, many fake news detection approaches have
been introduced, and most of the existing methods rely on either news content or the social context of
the news dissemination process on social media platforms. In this work, we propose a generic model
that is able to take into account both the news content and the social context for the identification of
fake news. Specifically, we explore different aspects of the news content by using both shallow and deep
representations. The shallow representations are produced with word2vec and doc2vec models while the
deep representations are generated via transformer-based models. These representations are able to jointly
or separately address four individual tasks, namely bias detection, clickbait detection, sentiment analysis,
and toxicity detection. In addition, we make use of graph convolutional neural networks and mean-field
layers in order to exploit the underlying structural information of the news articles. That way, we are able to
take into account the inherent correlation between the articles by leveraging their social context information.
Experiments on widely-used benchmark datasets indicate the effectiveness of the proposed method.

INDEX TERMS Fake news detection, deep learning, markov random field, representation learning,
question answering, sentiment analysis, clickbait detection, toxicity detection, bias detection.

I. INTRODUCTION
Fake news, which refers to stories that are intentionally and
verifiably false, is deliberately created to mislead people
for financial or political gains and has existed for a long
time, even before the appearance of traditional media such
as the printing press [1]. Social media platforms such as
Twitter or Facebook and their increasing popularity speed up
the dissemination of fake news since news can quickly and
freely circulate through a huge network of social media users,
where everyone can view and share news without paying
much attention to the veracity of each reported claim [2].

Early works in fake news detection are mainly based on
fact-checking of external sources or the writing style of news
content [1]. The fake news detection task is traditionally
approached using linguistic features that are able to identify
linguistic patterns of the text [3], [4]. The main limitation
of such methods is that they are hand-crafted and involve
manual labor for designing them. On the other hand, more
recent deep neural networks have been proposed to alleviate

the need for manually designing hand-crafted features since
deep learning methods are able to automatically capture lin-
guistic patterns. Note also that the articles (that are discussing
particular events, e.g., the election of the government) are not
unrelated the one with the other. This is because there are
common users that are interacting with these articles. Thus,
this is why in our previous research works, we have exploited
the correlation among the aforementioned articles [5], [6].

In particular, in our previous work (see [5]), we adopted
the strategy of leveraging the content of news articles and
exploited their correlation from the articles’ social context
to improve the fake news detection performance. In [5],
we formulated mean-field layers via Markov Random Fields
(MRF), taking into account the structural information of the
underlying graph of considered articles. We then used the
mean-field layers to design a deep learning model, referred to
as Deep MRF, for Fake News detection (DMFN). In this pa-
per, we provide a new perspective of the mean-field layers as
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proposed in [5] by illustrating the similarity of these layers to
graph convolutional layers [7]. More precisely, we show that
both graph convolutional layers and mean-field layers tend to
smooth the characteristics of nodes within the same cluster of
the underlying graph. Furthermore, we go beyond the DMFN
model in [5] by extending its multiview component. Unlike
our previous research work (see [5], [6]), in this work, we
are able to take simultaneously into account hand-crafted
features (e.g., the TF-IDF), deep neural network methods
(i.e., BERT), and graph neural networks for considering the
correlation among news articles.

This work extends our conference paper in [5]. Specifi-
cally, we (i) add a graph-based subcomponent to exploit the
engagement of social media users toward news articles, and
(ii) extend the multiview component by exploiting the use
of transformer-based models and that way integrating the
bidirectional deep representation of the articles’ content. On
top of that, we show with extensive experiments on popular
benchmark datasets that the proposed method outperforms
other existing state-of-the-art methods on the fake news
detection task. In summary, our contribution is three-fold:

• We provide an alternative formulation for the mean-field
layers proposed in our previous work (see [5]), and thus
show the equivalence of the mean-field layers and graph
convolutional layers in smoothing the characteristics of
nodes within the same cluster.

• We extend the multiview component of our DMFN
model in [5] by considering also the user engage-
ments towards news articles and deep bidirectional
representation of the articles’ content. The deep bidi-
rectional representation of the news content is gener-
ated via transformer-based models [8], [9], which have
been jointly or independently trained on various tasks
strongly related to the fake news detection task.

• We carry out comprehensive experiments on three
benchmark datasets. We show that our method is able
to achieve consistent improvements on top of our
DMFN model [5] and outperforms existing state-of-the-
art methods on the task of fake news detection.

The rest of our paper is structured as follows. In Section II,
we briefly present the related work and indicate the difference
between our method and existing studies. Section III presents
the overall architecture that relies on the original DMFN and
provides an alternative formulation of the mean-field layers.
The extension to the DMFN model is described in Section IV
and Section V. Section VI demonstrates the effectiveness
of the proposed method via experimental studies and the
conclusion and future work are given in Section VII.

II. RELATED WORK
In the last two decades, there is a substantial increase in the
number of publications in the domain of media manipulation
and fake news [10], [11]. A number of tasks have been intro-
duced since then such as fact checking [12]–[14], rumor de-
tection [15], stance detection [16], assessing credibility [17],
and exaggeration [18], [19]. Moreover, several datasets have

been introduced for these tasks (see in particular the datasets
on claim verification [16], [20]–[22], entire article verifica-
tion [23] and verification of social media posts [24]–[26]).
For more details regarding tasks and datasets related to fake
news detection, we refer to the survey in [13].

A. HAND-CRAFTED FEATURES
Early work on fake news detection has been focused on
feature-based methods to separate fake from genuine news.
Linguistic patterns, such as, special characters, specific key-
words and expression types were exploited to spot fake
news [3], [27], [28]. However, these methods are not very
effective as fake news is intentionally created to mimic the
true news [29]. Apart from textual features, user related fea-
tures were also leveraged to detect fake news. In particular,
features like the number of followers, the age and the gender
of users [3], [4], and news’ propagation patterns [3], [30]
were shown to to improve performance when combined with
textual patterns; however, the reported prediction accuracy of
such models is still relatively low [10]. It is worthwhile men-
tioning that the majority of these works rely on combinations
of the aforementioned features rather than only on a single
feature. Similar to these works, we also extract hand-crafted
features. However, we do not rely on manually engineered
features such as special characters or keywords, but we rather
extract TF-IDF representations and timeseries (e.g., number
of tweets in different timeslots) for our multiview component
due to their state-of-the-art performance in [5].

B. DEEP NEURAL NETWORKS
With the evolution of deep neural models, researchers have
also investigated deep learning architectures for fake news
detection, which led to reestablishment of state-of-the-art
performance [10], [11]. Many of them have represented the
claims and articles as latent embeddings and fed them to
neural classifiers [31]–[35]. Different architectures such as
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) have been used to encode the articles and
the claims. Alternatively, deep neural networks that input
multiple types of features have been studied to detect fake
news [36]–[38]. Recently, researchers have started using
transformers in the task of fake news detection [39] due to
their state-of-the-art performance in a number of NLP tasks
(e.g, text classification, named entity recognition) [9]. We
follow a similar approach to prior work on similar problems
such as fact verification [13] and fake news detection [10],
and we rely on BERT for extracting feature-based represen-
tations. However, we pretrain the models on similar tasks (to
our core task) and apply transfer learning instead of fine-
tuning the model to the new dataset. This is because we aim
at a general purpose model that is able to generalize well on
several similar tasks.

C. CORRELATION AMONG NEWS ARTICLES
Most of the aforementioned fake news detection models
ignore the correlation among the news articles when mak-
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ing decisions (a.k.a., they treat each news article indepen-
dently of others). Nevertheless, news articles’ correlation has
been found effective in analysing online news and social
events [6], [29], [40]–[42]. The correlation between news
articles has also been exploited in the works of Shu et
al. [29] and Zhang et al. [40]. Unlike our work, where we
consider directly the connection among the news articles,
they indirectly capture the correlations among the articles
via modeling the relationships of these articles among their
publishers and the social media users interacting with the
articles. Freire et al. [41] proposed to detect breaking news
on Wikipedia by exploring the graph of related events, where
the graph is created by connecting any pair of pages on
Wikipedia edited by the same users during a small time
frame. The breaking news is then detected using a traditional
densest-subgraph extraction approach. Fairbanks et al. [42]
constructed a graph of news by connecting the web pages
referring to a specific event and estimated the credibility of
news by employing a belief propagation algorithm on the
constructed graph. In their experiments, they illustrated that
the correlations among the news (encoded in the constructed
graph) were more effective than the textual content of the
news for predicting their credibility. Similarly, in [6], a graph
of news articles was constructed, encoding their correlation.
The graph is then used directly by a graph convolutional
network for credibility inference. Our previous research [5]
adopted the similar idea of exploiting the correlation between
news articles. However, the correlation was exploited via
mean-field layers derived from MRF. This work extends our
previous research [5] by not only considering the correlation
between news articles but also the correlation between users
involved with the same article. In addition, we show the
equivalence of the mean-field layers with popular graph con-
volutional layers [7] in smoothing the characteristics of nodes
within the same cluster, which explains the effectiveness of
the proposed mean-field layers.

III. MULTIVIEW DEEP MARKOV RANDOM FIELD MODEL
In this section, we first show how the correlation between
news articles can be exploited using a deep MRF, which
leads to the formulation of mean-field layers. We subse-
quently describe how these layers are used to create novel
learning architectures for Fake News detection. Additionally,
we describe the details of the considered features and their
extraction procedure.

A. CORRELATION EXPLOITATION WITH DEEP MRF
As discussed in Section II, the correlation among news
articles has been proven effective in many tasks including
breaking news detection and fake news detection. To consider
this correlation, a graph of articles is created. In this graph,
nodes represent the articles and edges are formed based on
the number of common associated social media users. Fig-
ure 1 illustrates how such a graph is created. Let G = (V,E)
denote the undirected article graph, where V (|V | = n) is the
set of nodes and E is the set of edges. Let L denote the set of
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FIGURE 1: The construction of an article graph. A node
represents an article and connections are based on common
users. The weight of each connection indicates the number of
common users.
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FIGURE 2: The structure of a mean-field layer that smooths
out the label probabilities Q(t−1) of an arbitrary model. A
and M denote the adjacency matrix of the graph of news
articles and the compatibility matrix, λ is a constant, and t
indicates the layer order.

labels, |L| = s. Let A ∈ Rn×n be the symmetric adjacency
matrix of graph G such that Aij is equal to the weight of edge
(i, j) ∈ E; the adjacency matrix captures the correlation of
articles. Let X = {Xk}nk=1 define the set of random variable
representing the labels of nodes of G. In our prior work [5],
we introduced a Markov Random Field based model, where
the distribution P (X) can be estimated by:

P (X = x) =
1

Z
exp(−E(x)) (1)

=
1

Z
exp

{ ∑
k∈V

Φ(xu
k) + λ

∑
k,l∈N

Ψ(xu
k , x

v
l )

}
(2)

In Eq. (1), Z is the factor to ensure a valid distribution and
E(x) is the energy of the MRF, which can be decomposed
into two components, the aggregated unary potential (i.e., the
first term in Eq. (2)) and the aggregated pairwise potential
(i.e., the second term in Eq. (2)). More precisely, Φ(xu

k) is the
cost of assigning label Lu to node k, and Ψ(xu

k , x
v
l ) measures
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the cost of assigning labels Lu and Lv to node k and node l,
respectively. P (X) is then approximated using a simplified
factorization assumption P (X) ≈ Q(X) =

∏
k∈V qk such

that:

quk =
1

Zk
exp

{
− Φ(xu

k)− λ
∑
l∈Nk

α(k, l)
∑
v∈L

qvl µ(u, v)

}
.

(3)
Equation (3) represents an iterative update rule, which we
refer to as mean-field update rule. In Eq. (3), Zk =

∑
u∈L quk ,

where quk represents the probability that node k is assigned
label u, Φ(xu

k) is the unary potential and is given by Φ(xu
k) =

−lnP (Xk = Lu). The second term in Eq. (3) is the pairwise
potential, representing the correlation between node k and
node l. α(k, l) = Akl is the weight of the edge (k, l), and
µ(u, v) is label compatibility representing the discrepancy
between the two labels, namely that µ(u, v) ∈ {0, 1},∀u, v,
and µ(u, v) = 1 if u ̸= v.

Let Q ∈ Rn×s be the matrix containing entries quk , which
are the output probabilities of a model such as a neural net-
work. It follows that Φ = −ln(Q). We denote by M ∈ Rs×s

the matrix with the label compatibility entries µ(u, v). As
matrix M is symmetric, Eq. (3) can be re-written in a matrix
form as:

Q(t) = softmax
(

ln(Q(t−1))− λAQ(t−1)M

)
, (4)

with t denoting the time step. Using Eq. (4), we design
a mean-field layer, as illustrated in Fig. 2. Hence, t also
indicates the t-th mean-field layer, which has Q(t−1) as an
input and Q(t) as output. Multiple mean-field layers can be
stacked together to obtain a higher level of smoothness of
output probabilities. We observe that a mean-field layer acts
similarly to a graph convolutional (GCONV) layer (see [7])
in that the two layers encourage the agreement of nodes in
the same cluster. Specifically, the GCONV layer operates on
node feature vectors and encourages the nodes in a cluster
to obtain similar representations. This eventually helps in
assigning similar labels for the nodes that belong in the
same cluster (see [43]). Similar to a GCONV layer, a mean-
field layer encourages the smoothing of output probabilities;
however, this layer works directly on the output probabilities
(i.e., Q(t)). Specifically, the product S = AQ(t−1)M ∈
Rn×s represents the aggregated discrepancy of the nodes
with regard to their neighboring nodes; hence, a small value
of Sku will increase the confidence of assigning label Lu to
node k and vice versa. This means that node k is more likely
to have label Lu if its neighboring nodes also have label
Lu. Eventually, nodes within the same cluster (i.e., having
the same label) tend to have similar output probabilities.
However, stacking too many layers leads to over-smoothing,
which may reduce the performance of the model [43]. Thus,
the number of the mean-field layers T is a hyper-parameter
in the proposed method.

B. MULTIVIEW DEEP MRF FOR FAKE NEWS
DETECTION
Fake news typically has special language patterns (e.g., ex-
aggeration and rhetoric) [44] and is being shared by unre-
liable users (i.e., users with a history of sharing unreliable
news) [6]. Moreover, the reaction of social media users
towards fake news tends to be different compared to the
reaction towards real news [45]. With that in mind, we design
a Generic Deep MRF Neural Network architecture for detect-
ing Fake News, referred to as GDMFN. The model exploits
the aforementioned observations and also the correlation
between news articles.

The architecture of the GDMFN model is presented in
Fig. 3. It consists of three sequentially connected compo-
nents, namely, feature learning, classifier and mean-field.
The feature learning component has multiple branches. Each
branch transforms a raw input feature to a high level feature
(i.e., a vector embedding). The high-level features are then
concatenated to obtain a shared representation of the inputs.
The shared representation is then passed to the subsequent
classifier component. This component consists of several
fully connected layers followed by a softmax classifier to
produce the class specific probabilities. Finally, these prob-
abilities are passed through the last component that consists
of several mean-field layers (see Fig. 2). The aim of this
component is to smoothen the class probability values by
leveraging the correlation between the news articles.

The GDMFN model can be instantiated by using differ-
ent sets of features. For instance, in our previous research
work [5], our DMFN model leverages four types of features:
term frequency-inverse term frequency (TF-IDF), word2vec
embeddings, node2vec embeddings, and time series. The
input features of the DMFN model are encompassed in the
dashed box signified with Base component. The Additional
component is not part of the DMFN architecture. The fea-
tures in the Base component are described in what follows.

TF-IDF is a weighting scheme widely used in information
retrieval and data mining. It has been recently used along with
deep learning models leading to promising results in various
tasks [5], [46], [47]. TF-IDF evaluates the level of importance
of a particular term (e.g., token) for a document belonging to
a corpus of documents. The importance increases proportion-
ally to the frequency of the term in the document and it takes
also into account the overall frequency of the term in the
corpus. We extract TF-IDF features from tweets associated
to the news articles. Specifically, tweets associated with an
article are grouped to a pseudo tweet document. We then
preprocess the documents by removing stop words, URLs,
and converting the words into lower case. We then extract the
TF-IDF features from the pre-processed tweet documents.

We also exploit the use of word embeddings, namely, the
word2vec model [48] (see Fig. 3). Word2vec embeddings
capture the semantics of individual terms, which has been
proven beneficial in a number of NLP tasks such as en-
tity recognition and relation extraction [49], text classifica-
tion [50], fact verification [13], etc. We rely on the pre-trained
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FIGURE 3: The GDMFN model for two-class fake news detection (i.e., True/False) has three main components: feature
learning, classifier, and mean field. The feature learning component can has multiple inputs. Here, it is depicted with two
subcomponents: Base and Additional. The Base subcomponent has four features (i.e., TF-IDF, word2vec, node2vec, and time
series), which form the DMFN model, proposed in our previous work [5]. This work extends our previous research by adding
the Additional subcomponent with features based on graph neural networks (GNN branch) and transformer models.
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FIGURE 4: The construction of the user graph. A node repre-
sents a social media user (i.e., Twitter user) and a connection
between two users is based on their common engagements
with news articles. The weight of a connection is equal to the
number of common engagements.

word2vec1 model provided by Google for word2vec feature
extraction.

Node2vec is a method proposed in [51] to learn continuous
feature representations (embeddings) for nodes in a graph.
The embeddings reflect the local connectivity pattern of the
graph. We rely on node2vec embeddings to capture the pecu-

1https://code.google.com/archive/p/word2vec/
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FIGURE 5: Time series feature extraction from tweets as-
sociated with a news article. Vector x⃗ contains elements
indicating numbers of tweets associated with an article per
hour after the article is shared on Twitter.

liarities of the graph of social media users who are involved
with events (a.k.a., articles or news items). We construct the
user graph in the following way. First, users engaged with
a set of all considered events are collected; these users are
considered as nodes of the user graph. Connections between
the nodes (a.k.a., users) are created based on common news
articles these users interact with, where the weight of a
connection between two users is the number of common
news articles. Figure 4 illustrates the construction of the user
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graph. The node2vec model [51] is then trained on the user
graph, producing node2vec embeddings. The node2vec fea-
ture vector of an article is then computed by averaging over
the node2vec embeddings of the users interacting with it.

The time series feature captures the number of reactions to
news items on social media across time. As shown in [45],
the per-hour number of social media posts associated to real
news is different to that associated with fake news. Motivated
by this, we extract the time when a news item appears on
social media and measure the number of associated tweets
during subsequent time instants (hours). This produces a time
series vector representing the number of reactions per hour to
the news item (see Fig. 5).

IV. GRAPH-BASED COMPONENT INTEGRATION
In the DMFN model, the structural information of the user
graph is captured using node2vec embeddings [51]. This
feature is learned in an unsupervised manner, and thus it is
task-agnostic. Furthermore, the node2vec method leverages
the shallow architecture of the skip-gram model [48], thus
it may not express accurately the rich structural information
of the user graph. Therefore, we extend the DMFN model
by adding a graph-based model consisting of several graph
convolutional layers so as to better express the underly-
ing structure of the user graph. Specifically, we create an
extra branch that contains graph convolutional (GCONV)
layers [43] (see Fig. 3). The input of this branch is the graph
of users interacting with a news article; hence, each article
has one connected user sub-graph, which is a part of the
entire user graph as described in Section III-B (see Fig. 4).

Let D̃ be a diagonal matrix, where D̃ii =
∑n

j=1 Ãij and
Ã is the adjacency matrix defined in Section III-A with self-
connections added. We denote by H(k) and H(k+1) the input
and output matrices of a GCONV layer, respectively. A row
in these matrices is the feature vector of a node. The layer is
parameterized by matrix W. We employ the propagation rule
in Kipf et al. [7], which can be written as2:

H(k+1) = D̃− 1
2 ÃD̃− 1

2H(k)W (5)

We extract node feature vectors as follows. Since a so-
cial media user (e.g., Twitter or Weibo user) corresponds
to a node, we employ user profile information for node
feature vectors. Specifically, for Twitter users, we col-
lected the favourites_count, followers_count, friends_count,
geo_enabled status, statuses_count, verified status, url avail-
ability, and screen_name to form user feature vectors. In
addition, the node degree is used as an extra feature. Finally,
these vectors are normalized by removing the mean and
dividing by the standard deviation (a.k.a., Z score). The Z-
score vectors then become the input for the graph-based

2Different propagation rules can be defined for the GCONV layers, such
as the propagation rule, H(k+1) = D̃−1ÃH(k)W, proposed in [52],
or the propagation rule, H(k+1) = ÃD̃−1H(k)W, proposed in [43].
However, we select the propagation rule in [7] as we found it the most
effective in our experiments.

TABLE 1: Datasets used for fine-tuning BERT models. Note
that the sentiment analysis task has 3 labels, while the other
tasks have 2 labels (see Table 2 for details about the labels).

Task Dataset Weighted Sampling
Clickbait detection Article headlines [53] No
Sentiment analysis Financial Phrase Bank [54] No

Bias detection BASIL (article sentences) [55] Yes
Toxicity detection Wikipedia discussions [56] Yes

branch. For other social media platforms (e.g., Weibo), the
feature extraction process is similar.

V. TRANSFORMER-BASED EXTENSION
In the DMFN model, we have used two types of textual repre-
sentations, i.e., TF-IDF and word2vec. These representations
focus on individual words, ignoring the overall semantics
of the entire sequence (e.g., a sentence or a paragraph).
To address this shortcoming, we leverage a transformer-
based model, BERT [9], to represent the content of the news
articles and their associated tweets via its deep bidirectional
encoder representations. These representations, which are
context-aware and known to perform well in a number of
NLP tasks [9], are then used on top of the DMFN model
(see Fig. 3). These transformer-based features capture dif-
ferent aspects of the content of news and tweets, which are
derived from four individual tasks: (i) clickbait detection, (ii)
sentiment analysis, (iii) bias detection, and (iv) toxicity detec-
tion. We present two approaches to extract the transformer-
based features: we either train four individual single-task
BERT models (i.e., one for each task) or a unified model for
the four tasks; the unified model is called “Tetrathlon”. In the
following two sub-sections, we describe these models.

A. SINGLE-TASK MODELS
We follow the transfer learning paradigm to fine-tune pre-
trained BERT models for the considered tasks. A pre-
trained BERT model is taken from the Hugging Face repos-
itory3. This model was already fine-tuned from the original
BERTbase [9] to classify the sentiment of the IMDB reviews
as either positive or negative.

We leverage four datasets to fine-tune the aforementioned
BERT model for the considered tasks. For clickbait detection,
we use the headlines of articles published by Chakraborty
et al. [53]. For sentiment analysis, we employ a publicly
available dataset from Kaggle4, which was first introduced
in [54]. For bias detection, the BASIL dataset is used [55].
Finally, we use the dataset published by Pavlopoulos et
al. [56] to fine-tune the BERT model for the toxicity detection
task. The details of the considered datasets are described on
Table 1. The datasets for clickbait detection and sentiment
analysis are balanced and thus a normal training procedure is
used; namely, the training is performed with small batches.

3https://huggingface.co/textattack/bert-base-uncased-imdb
4https://www.kaggle.com/ankurzing/sentiment-analysis-for-financial-news
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FIGURE 6: Architecture for the clickbait single-task model.
The headline input is “Leading Doctor Reveals the No. 1
Worst Carb You Are Eating” and at the beginning of the
sentence we add the [CLS] token similar to the work of [9].
The hidden state of the [CLS] token contains information for
the entire input sequence and it is used for the classification
task. In particular, on top of the [CLS] hidden state, we add
a fully connected layer (i.e., denoted by FC) and a softmax
classifier to produce the clickbait/not clickbait probabilities.

The bias and toxicity datasets are unbalanced; therefore, we
rely on weighted sampling5.

Figure 6 shows the architecture of a single-task model in
the context of clickbait detection. The input is the headline
of one clickbait article, which is “Leading Doctor Reveals
the No. 1 Worst Carb You Are Eating”. This input gets
forwarded to the BERT model, which is followed by a binary
classifier. The classifier determines if the input sentence is
clickbait or not clickbait. Note that the classifier only acts on
the output that corresponds to the [CLS] token. This token
indicates the start of the sentence, and the output (i.e., hidden
representation) corresponding to this token can be considered
as the representation of the input sentence (a.k.a., sentence
embedding).

B. THE TETRATHLON MODEL
In the previous section, we train one individual BERT model
for a single task. However, it is known that training a model
with multiple tasks (multi-task learning) can help improve
performance over single-task models [57]. One noticeable
example is the decaNLP model [58], where ten NLP tasks
(e.g., question-answering, summarization, machine transla-
tion, sentiment analysis) are cast into a question-answering
(QA) problem in order to train a unified model. As a result,
the model can generalize to completely new tasks though

5Formally, let us consider a dataset D with a set of labels L =
{L1, L2, . . . , Ls}. To sample a batch with size B, examples are selected
based on the proportion of each type of labels. Specifically, an example xk

with label u is selected with probability: P (xu
k) = 1

|L|nu
, where nu is

number of examples with label u (i.e.,
∑s

u=1 nu = |D|).
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FIGURE 7: Architecture of the Tetrathlon model. Embed-
dings of all tokens are inputs to a linear layer to obtain logits.
We then use the softmax function and argmax functions
to obtain start and end indices of the extracted answer.

different but related task descriptions [58]. We follow the
concept of the decalNLP model to train a unified BERT
model, called Tetrathlon, which can address the four tasks
mentioned earlier (i.e., bias detection, sentiment analysis,
clickbait detection, and toxicity detection). We formulate
these tasks as a QA problem similar to the decalNLP model.
However, different from decalNLP [58] that depends heavily
on bidirectional long short-term memory networks (BiL-
STMs), our method is based on the BERT model. BERT
relies on the self-attention mechanism introduced in the work
of transformers (see [8] for more details) and has been
successfully used for many NLP tasks to produce state-of-
the-art results.

In our formulation, two inputs are needed for the QA prob-
lem, including a question and its context. The model outputs
the answer extracted from the context. Let us consider a
simple example as follows.

Question: Who do I owe money to?
Context: I owe Jack 10 euros.

Answer: Jack

The BERT model is fine-tuned to return a part of the text
from either the question or the context as the answer. Thus
the considered model returns the start and end indices as
output. These indices point to where the answer is in the input
that is given to the BERT model. It is worth mentioning that
this approach leads to a unique model that can be used for
different tasks. This has several advantages. First, no changes
are required if the task changes. For instance, the sentiment
analysis task has three classes (i.e., negative, neural, positive)
while the clickbait detection task has two classes (i.e., click-
bait or not clickbait). Hence, a modification needs to be made
to the single-task model if the task changes. On the other
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hand, no modifications are needed for the Tetrathlon model to
handle both tasks. In addition, training the Tetrathlon model
is extremely simple. Datasets of different tasks can be mixed
together and used as a unique dataset since there are no
distinctions at the output of the model for considered tasks.
This could be helpful in case only small datasets are available
for specific tasks and we want to leverage the availability of
large datasets of other tasks.

A BERT model would slightly modify the question and
context by adding special tokens, namely “[CLS]” and
“[SEP]”, as follows:

[CLS] Who do I owe money to? [SEP] I owe Jack 10 euros.
[SEP]

Typically, the question goes before the context. The [CLS]
token indicates the start of the input and the [SEP] token is
used to separate sentences or to mark the end of the input
sequence.

In order to leverage this QA approach, it is important
to ask the right questions. For instance, we could ask “Is
this sentence clickbait?” for the clickbait detection task.
However, the BERT model would not know how to answer
“not clickbait” since “not clickbait” is not present in the
input sequence. Hence, a better question would be “Is this
sentence clickbait or not clickbait”, which allows the model
to extract the right answer since both of the possible classes
are present at the question passage. We apply this strategy for
all considered tasks. The questions and possible answers for
each task are given in Table 2.

The architecture of the model is illustrated in Fig. 7. The
question and context are forwarded to the BERT model. Then
the output embeddings for input tokens are passed to a linear
layer with 2 outputs. The linear layer is the same for every
output of the BERT model. These 2 outputs are the start index
logits and the end index logits. These logits are determined
by using a softmax function. Formally, let Z ∈ RN×F

denote the output of the final encoder, where N is the length
of the input sequence and F is the dimensionality of the
embeddings. Adding a linear layer and a softmax function
will result in:

Y = softmax(WT · ZT ), (6)

where W ∈ RF×2. The largest outputs are then the start and
end indices of the answer, namely that y = argmax(Y, axis =
1). Thus, we have a range [start_index, end_index] that lo-
cates the answer in the input sequence (i.e., the concatenation
of the question and the context passage). One problem with
this approach is that there is a possibility that the model
outputs a nonsensical answer. Specifically, the model behaves
correctly if it extracts either “clickbait” or “not clickbait”
from the input. However, the model could extract the sub-
sequence “Reveals the No. 1” from the input sequence, which
does not properly answer the question. A possible approach
to address this problem could be to assign the closest valid
answer to the predicted sub-sequence as the answer. In addi-
tion, we can try to shorten the question to make the predicting

of the answer less challenging. We plan to explore these
possibilities in future work.

Similar to single-task models, we employ a pre-trained
BERT model, which was previously trained by Hugging Face
for the question-answering task on the SQuAD1.1 dataset6.
The pre-trained model is available online7. We use the four
datasets used for training the single-task models with the
same train/test splitting settings (see Section V-A). In addi-
tion, we have randomly chosen 320 samples from the training
set of each of the four datasets in order to form the validation
set. We concatenate the sampled validation instances and we
obtain a balanced validation set of 1280 samples. Since the
four datasets have different sizes and some of the considered
datasets are unbalanced (i.e., toxicity and bias datasets), we
use again the weighted sampling strategy similar to the case
of training single-task models (see section V-A)8.

C. FEATURE EXTRACTION
The single-task and Tetrathlon models are able to learn the
representation of textual content in order to classify sentences
for different tasks. Hence, we can leverage these models to
create extra features for the GDMFN model (see Section III).
We can use the logits9 as features, but the logits are only
2-dimensional (or 3-dimensional for the sentiment task),
thus, they do not contain much information. The authors
of [9] propose multiple ways for feature extraction using
the BERTbase model. Specifically, for the BERTbase model
consisting of 12 layers where the output of one layer is a 768-
dimensional vector, their feature-based approach includes
using the output of the last layer as a feature or to sum the
outputs across all 12 layers. In the end, the authors of [9]
found that concatenating the outputs of the last 4 layers gives
the best results. This means that the feature vector has 3072
dimensions. We follow this approach to extract extra features
for the GDMFN model.

Using the aforementioned approach, every token that is
forwarded to the BERT model has an associated 3072-
dimensional feature vector. For example, if we forward the
following sentence:

[CLS] Hello there [SEP],

we will get a 3072-dimensional feature vector for each of
the tokens “[CLS]”, “Hello”, “there” and “[SEP]”. Follow-
ing [9], we consider the feature vector corresponding to
the [CLS] token as the representation for the entire input

6https://rajpurkar.github.io/SQuAD-explorer/
7https://huggingface.co/csarron/bert-base-uncased-squad-v1
8Formally, let D = {Dk}nk=1 denote the set of considered datasets where

a dataset Dk has L(Dk) = {Lu
k}

m
u=1 labels. The probability of selecting

an example from dataset Dk with label Lu is given by

P (xu
k) =

1

|Dk| · |L(Dk)| · nu
k

, (7)

where nu
k represents the number of examples having label Lu in dataset Dk .

9Logits are the output values before applying the softmax function to
obtain probabilities

8 VOLUME 4, 2016

https://rajpurkar.github.io/SQuAD-explorer/
https://huggingface.co/csarron/bert-base-uncased-squad-v1


Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2: Questions and possible answers for all the Tetrathlon tasks.

Task Question Answer
Clickbait detection Is this sentence clickbait or not clickbait? clickbait, not clickbait
Financial sentiment analysis Is this sentence positive, neutral or negative? positive, neutral, negative
Bias detection Is this sentence biased or not biased? biased, not biased
Toxicity detection Is this sentence toxic or not toxic? toxic, not toxic
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FIGURE 8: Feature extraction for an input sequence. Fol-
lowing the original work [9], the last four embeddings corre-
sponding to token [CLS] are concatenated to obtain the final
representation for the input sequence.

sequence. The entire procedure for feature extraction is de-
scribed graphically in Figure 8.

1) Feature Extraction for Articles
We aim to extract features from articles to enrich the input in-
formation for the GDMFN model. This is done by forwarding
the content of articles to the fine-tuned BERT models. The
3072-dimensional feature vector corresponding to the [CLS]
token is then considered as the representation for that par-
ticular article. We consider both the single-task models and
the Tetrathlon model. For the single-task models, the article
is forwarded to every fine-tuned single-task BERT model.
On the other hand, the article content and the corresponding
questions are forwarded to the Tetrathlon model. As there are
four questions, every article is forwarded to the Tetrathlon
model four times, each time with a different question.

2) Feature Extraction for Tweets
Since there are many tweets related to a single article, we pass
all the tweets to the BERT models one by one and extract
a 3072-dimensional feature vector for each of the tweets10.

10URLs were removed from the tweets before tokenizing them.

The final representation of the tweets associated to one event
is found by averaging the feature vectors of the tweets that
correspond to that specific event.

VI. EXPERIMENTS
A. EXPERIMENTAL SETTINGS

In order to evaluate the proposed models, we employ three
benchmark datasets: Twitter, Weibo, and PHEME [31], [59].
In the Twitter dataset, there are 992 events, 233K Twitter
users and 592K tweets. The Weibo dataset is a larger dataset
with 4664 events, 2.8M users, and 3.8M posts. An event,
described by a news article, is associated with a set of tweets
(or posts for the Weibo dataset). For both datasets, an event is
associated to a True or a False label. Specifically, a True label
means an event has actually happened while a False label
suggests that the event has been fabricated. The PHEME
dataset contains 5802 discussion threads on Twitter related
to 5 main events. Note that an event has multiple threads, and
a thread contains a source tweet and many reaction tweets.
The total number of tweets for the PHEME dataset is ap-
proximately 103K. Similar to the Weibo and Twitter datasets,
the PHEME dataset has also binary labels (i.e., rumor and
non-rumor). Following existing works [5], [31], we use a 4-
fold cross-validation setting to evaluate the performance of
the proposed model on the Twitter and Weibo datasets. For
the PHEME dataset, we employ the 5-fold leave-one setting
presented in [59]. In this setting, for each fold, an event,
associated with a number of discussion threads, is kept for
testing and the four remaining events are used for training.
It is worth noting that cross-validation is typically used for
hyper-parameter optimization and model selection. However,
to ensure a fair comparison with existing methods, we opt
for using this procedure. We evaluate the performance of
our models in terms of the accuracy, precision, recall, and
F1 score. Since the parameters of the proposed models are
initialized randomly, the results may vary at different runs. In
order to obtain robust results, we measure the performance of
the proposed model over 10 runs, where each run produces an
intermediate result of the 5-fold leave-one cross validation.
We report the average results over the 10 runs along with the
standard deviation. The set of benchmark models includes
DTC [3], SVM-RBF [4], RFC [30], SVM-TS [31], GRU-
2 [31], CAMI [32], and TD-RvNN [60] for the Twitter and
the Weibo datasets. Similarly, for the PHEME dataset, we
employ Naive Bayes, CRF, and TD-RvNN as benchmark
models following [33], [59]. We also compare the proposed
method (i.e., the GDMFN model with both Base compo-
nent and Additional component) against the original DMFN
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model from our previous work [5].

B. PARAMETER SETTINGS
Similar to [5], we employ one hidden layer for each feature
branch; a hidden layer has 100 hidden units. Likewise, one
hidden layer with a dimensionality of 100 is used after the
concatenation. The number of mean-field layers is set to
T = 5, and the pairwise potential coefficient γ (see Eq. (4))
is set to 0.05. Regarding the GNN module, we chose the
propagation rule proposed in the work of Kipf et al [7] com-
pared to the rest of the approaches indicated in Section IV
as we found that this propagation rule performs the best.
Two hidden GCONV layers are used, and each of them has
100 dimensions. In order to address over-fitting, we deploy
dropout with a drop rate of 0.9. In addition, early stopping
is used and we set the maximum number of training epochs
to 100. The learning rate is set to 0.001.

C. RESULTS
1) Classification Result
The results for the Twitter and Weibo datasets are shown in
Table 3. Unlike the rest of the benchmark models, for our
models, we present results that are averaged over 10 runs
along with the corresponding standard deviations. Among the
benchmark models for these datasets, CAMI [32] is the most
effective one, achieving F1 scores of 0.776 and 0.933 for the
Twitter and Weibo datasets, respectively. The DMFN model,
which our model relies on, outperforms the CAMI model by
a noticeable margin (i.e., 0.1 and 0.2 in terms of F1 score)
on both datasets. The proposed model, namely the generic
DMFN (GDMFN), achieves the best performance on both
datasets.

The results on the PHEME dataset are presented in Table 4.
The Naive Bayes models are not able to perform well due
to the imbalance between the rumor/non-rumor labels in the
PHEME dataset, which results in a noticeable difference
between the Precision and Recall scores. This leads to overall
low F1 scores (i.e., approximately 0.43). Although, the CRF
model suffers from the same problem, it is able to perform
better in terms of the F1 score evaluation metric. The TD-
RvNN method (see Table 4) performs the best among the
benchmark methods, and achieves an F1 score of 0.609.
Compared to these methods, the original DMFN model per-
forms much better by a large margin for all the performance
evaluation metrics. Again, the generic DMFN (GDMFN)
achieves the best performance thanks to its capability of
exploiting many aspects of the data.

2) Ablation Study
In this section, we evaluate the effectiveness of the extra
features and the additional module (see Section IV and Sec-
tion V for more details) added on top of the original DMFN
model. Specifically, in our ablation study, we are able to iden-
tify the contribution of the features extracted from (i) single-
task models (see Section V-A), (ii) the Tetrathlon model (see
Section V-B), and (iii) the GNN module (see Section IV)

when they are added to the original set of features used in the
DMFN model (see Section III-B). Our naming convention is
as follows. Features extracted from the Tetrathlon model are
referred to as “Multi” (e.g., “Tweet-Multi”) as the Tetrathlon
is a multi-task model. It should be noted that “Tweet-Multi”
is not a single feature. Instead, it refers to a feature set that
consists of four types of features, including bias, sentiment,
clickbait, and toxicity. The features extracted from single-
task BERT models are denoted with “Single” (e.g., “Tweet-
Single”). Similarly, the “Tweet-Single” term refers to the four
features mentioned earlier.

Table 5 shows the ablation study results for the Twitter
dataset. For ease of comparison, the result for the original
DMFN model is also included (i.e., the row “Original”). It
can be seen that adding more features generally improves
the performance of the proposed model. The GNN module
helps the GDMFN model achieve the best performance with
an F1 score of 0.792. However, using all features (i.e., row
“All”) does not guarantee a better performance compared to
the original set of features. Instead, the model will be more
prone to overfitting as more parameters are included in the
model.

The ablation study results for the Weibo dataset are sum-
marized in Table 6. Similar to Table 5, the result for the
DMFN model with the original feature set is included (i.e.,
row “Original”). As we were not able to find Chinese datasets
for bias detection, toxicity detection, and clickbait detection,
only one single-task BERT model for sentiment detection
was fine-tuned. Thus for the Weibo dataset, the only new
feature extracted from BERT is the sentiment feature (i.e.,
row “Sentiment”). Similar to the Twitter dataset, adding a
new feature or the GNN module produces slightly better
results. The best performance on this dataset is achieved
when all features are used. In particular, the proposed model
achieves the best numbers in terms of accuracy (96.3%),
precision (0.963), recall (0.963), and F1 score (0.963).

Tables 7 and 8 show the ablation study results for the
PHEME dataset. We study two settings for this dataset,
Specifically, (i) the normal 4-fold cross validation and (ii) 5-
fold leave-one settings are considered. For setting (i), adding
one feature type (e.g., Tweet-Multi, Tweet-Single) or the
GNN module increases the performance of the GDMFN
model in terms of all the performance evaluation metrics.
The improvement increases when all features are exploited.
Similar results could be observed with setting (ii). However,
the best performance in that setting is obtained only when the
GNN module is added.

VII. CONCLUSION
In this paper, we showed the analogy between mean-field
layers and GCONV layers in terms of smoothing the charac-
teristics of nodes in a graph, which explains the effectiveness
of the proposed GDMFN model. In addition, we extended
the original DMFN model by adding an extra GNN module
to exploit the correlation of social media users involved
with news articles. Furthermore, we formulated four different
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TABLE 3: Fake news detection performance of the proposed model (i.e., GDMFN) in comparison with baseline models. We
report the best result for the GDMFN model with the original feature set (i.e., TF-IDF, word2vec, node2vec, time series) and
the transformer-based features as well as the GNN module. Our results are calculated by averaging over 10 runs, hence they
are more robust than the results of baseline methods.

Model Twitter Weibo
Accuracy Precision Recall F1 Accuracy Precision Recall F1

SVM-RBF [4] 0.715 0.720 0.710 0.709 0.818 0.819 0.818 0.818
DTC [3] 0.718 0.718 0.718 0.718 0.831 0.831 0.831 0.831
RFC [30] 0.728 0.728 0.728 0.728 0.849 0.866 0.849 0.847

SVM-TS [31] 0.745 0.741 0.741 0.740 0.857 0.859 0.858 0.859
GRU-2 [31] 0.757 0.760 0.757 0.771 0.910 0.914 0.910 0.910
CAMI [32] 0.777 0.782 0.777 0.776 0.933 0.933 0.933 0.933
DMFN [5] 0.789± 0.006 0.793± 0.006 0.789± 0.008 0.788± 0.007 0.958± 0.002 0.959± 0.001 0.959± 0.002 0.958± 0.001

GDMFN (our) 0.793± 0.007 0.798± 0.008 0.793± 0.010 0.792± 0.007 0.964± 0.002 0.964± 0.002 0.964± 0.002 0.964± 0.002

TABLE 4: Results for PHEME dataset with 5-fold leave-one
setting in comparison with existing methods.

Model Precision Recall F1
Naive Bayes Content 0.309 0.723 0.433

CRF Content 0.683 0.545 0.606
Naive Bayes Content + Social 0.310 0.723 0.434

CRF Content + Social 0.667 0.556 0.607
TD-RvNN + Social 0.616 0.612 0.609

DMFN 0.668± 0.006 0.673± 0.008 0.657± 010
GDMFN 0.670± 0.003 0.676± 0.004 0.661± 0.004

TABLE 5: Ablation results for Twitter dataset. A row in this
table shows the performance of the GDMFN model when a
new feature set is added to the original feature set.

Added Feature Accuracy Precision Recall F1
Original 0.789± 0.006 0.793± 0.006 0.789± 0.008 0.788± 0.007

Tweet-Multi 0.792± 0.007 0.797± 0.008 0.792± 0.008 0.790± 0.008
Tweet-single 0.791± 0.009 0.796± 0.009 0.790± 0.010 0.789± 0.009
Article multi 0.791± 0.009 0.796± 0.009 0.791± 0.009 0.789± 0.009
Article single 0.791± 0.012 0.795± 0.012 0.791± 0.013 0.790± 0.013
GNN module 0.793± 0.007 0.798± 0.008 0.793± 0.010 0.792± 0.007

All 0.789± 0.008 0.791± 0.008 0.787± 0.009 0.785± 0.008

NLP tasks as a QA problem, which we addressed by using
either the Tetrathlon or the single-task transformer-based
models, enabling unified deep bidirection representations of
news articles, which contribute to the ultimate task of fake
news detection. Experiments on popular benchmark datasets
show that the proposed method consistently improves over
the state of the art in fake news detection approaches. While
promising results have been obtained, the proposed model is
not fully end-to-end, namely that the transformer-based mod-
els are fine-tuned separately from the training of the GDMFN
model. Hence, our future work will focus on designing a truly
end-to-end model, which will simplify the training process.
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